文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

利用在Python中数值模拟研究气体扩散

2023-01-31 12:03

关注

Python 中,可以使用数值模拟来研究气体扩散。

模拟气体扩散需要解决两个问题:流体动力学方程(如 Navier-Stokes 方程)和扩散方程。

Python 代码模拟气体扩散

在进行模拟时,可以使用预定义的数学模型和算法,或者使用框架,如 FEniCS,FiPy 等。

以下是一个简单的 Python 代码演示如何使用数值模拟研究气体扩散:

import numpy as np
import matplotlib.pyplot as plt

Nx = 100
Ny = 100
Lx = 1
Ly = 1
dx = Lx / Nx
dy = Ly / Ny

x = np.linspace(0, Lx, Nx)
y = np.linspace(0, Ly, Ny)
X, Y = np.meshgrid(x, y)

# 初始条件
C = np.zeros((Nx, Ny))
C[Nx // 2, Ny // 2] = 1

# 时间步长和时间步长数
dt = 0.00001
Nt = 10000

# 扩散系数
D = 0.1

# 求解扩散方程
for n in range(Nt):
    Cn = C.copy()
    C[1:-1, 1:-1] = Cn[1:-1, 1:-1] + D * dt / dx**2 * (Cn[2:, 1:-1] - 2 * Cn[1:-1, 1:-1] + Cn[:-2, 1:-1]) + \
                    D * dt / dy**2 * (Cn[1:-1, 2:] - 2 * Cn[1:-1, 1:-1] + Cn[1:-1, :-2])

plt.imshow(C, extent=[0, Lx, 0, Ly], origin='lower', cmap='hot')
plt.colorbar()
plt.show()

运行代码得到下述绘图。 

上面的代码演示了如何模拟气体扩散的简单示例。

计算并显示气体浓度的均值和标准差

可以扩展上面的代码以实现更多功能。例如,可以计算并显示气体浓度的均值和标准差,以了解气体扩散的情况。

import numpy as np
import matplotlib.pyplot as plt

Nx = 100
Ny = 100
Lx = 1
Ly = 1
dx = Lx / Nx
dy = Ly / Ny

x = np.linspace(0, Lx, Nx)
y = np.linspace(0, Ly, Ny)
X, Y = np.meshgrid(x, y)

# Initial conditions
C = np.zeros((Nx, Ny))
C[Nx // 2, Ny // 2] = 1

dt = 0.00001
Nt = 10000

D = 0.1

for n in range(Nt):
    Cn = C.copy()
    C[1:-1, 1:-1] = Cn[1:-1, 1:-1] + D * dt / dx ** 2 * (Cn[2:, 1:-1] - 2 * Cn[1:-1, 1:-1] + Cn[:-2, 1:-1]) + \
                    D * dt / dy ** 2 * (Cn[1:-1, 2:] - 2 * Cn[1:-1, 1:-1] + Cn[1:-1, :-2])

mean = np.mean(C)
std = np.std(C)

print("Mean:", mean)
print("Standard deviation:", std)

plt.imshow(C, extent=[0, Lx, 0, Ly], origin='lower', cmap='hot')
plt.colorbar()
plt.show()

运行代码效果图如下所示:

研究气体扩展的高级方法

对于模拟气体扩散,一种常用的更高级方法是使用有限差分方法。

有限差分方法是一种数值模拟方法,用于通过在网格上插值,并使用已知的数值来求解微分方程。

常用的有限差分方法包括:

在 Python 中,可以使用 Scipy 库中的 scipy.sparse 和 scipy.sparse.linalg 模块来实现有限差分方法。

下面是一个使用正解差分模拟气体扩散的示例代码:

import numpy as np
import matplotlib.pyplot as plt

# Parameters
nx = 51
ny = 51
nt = 50
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .2
dt = sigma * dx

x = np.linspace(0, 2, nx)
y = np.linspace(0, 2, ny)

u = np.ones((ny, nx))
v = np.ones((ny, nx))

# Initial Conditions
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2
v[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2

for n in range(nt + 1):
    un = u.copy()
    vn = v.copy()
    u[1:, 1:] = (un[1:, 1:] - (un[1:, 1:] * dt / dx * (un[1:, 1:] - un[1:, :-1])) -
                 vn[1:, 1:] * dt / dy * (un[1:, 1:] - un[:-1, 1:]))
    v[1:, 1:] = (vn[1:, 1:] - (un[1:, 1:] * dt / dx * (vn[1:, 1:] - vn[1:, :-1])) -
                 vn[1:, 1:] * dt / dy * (vn[1:, 1:] - vn[:-1, 1:]))
    u[0, :] = 1
    u[-1, :] = 1
    u[:, 0] = 1
    u[:, -1] = 1
    v[0, :] = 1
    v[-1, :] = 1
    v[:, 0] = 1
    v[:, -1] = 1

fig = plt.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(x, y)
ax.plot_surface(X, Y, u, cmap='viridis')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()

这段代码是使用 Python 来模拟气体扩散的例子。代码使用了 NumPy 和 Matplotlib 库:

代码中首先设置了一些模拟参数,如网格点数、模拟步数、步长和时间步长等。然后使用 linspace() 函数创建网格点的横纵坐标。接着,通过对模拟初始条件的设置,创建了模拟的初始速度场和密度场。最后,代码实现了一个循环,使用正解差分来模拟气体扩散的过程,并使用 Matplotlib 可视化模拟的结果。

到此这篇关于利用在Python中数值模拟研究气体扩散的文章就介绍到这了,更多相关Python气体扩散内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯