什么是二叉搜索树
简单来说,就是方便搜索的二叉树,是一种具备特定结构的二叉树,即,对于节点n,其左子树的所有节点的值都小于等于其值,其右子树的所有节点的值都大于等于其值。
以序列2,4,1,3,5,10,9,8为例,如果以二叉搜索树建树的方式,我们建立出来的逐个步骤应该为
第一步:
第二步:
第三步:
第四步:
第五步:
第六步:
第七步:
第八步:
按照不平衡的普通方法生成的二叉搜索树就是这么一个样子。其实现代码如下:
package com.chaojilaji.book.searchtree;
import com.chaojilaji.auto.autocode.utils.Json;
import java.util.Objects;
public class SearchTreeUtils {
public static SearchTree buildTree(SearchTree searchTree, Integer value) {
if (value >= searchTree.getValue()) {
if (Objects.isNull(searchTree.getRightChild())) {
SearchTree searchTree1 = new SearchTree();
searchTree1.setValue(value);
searchTree.setRightChild(searchTree1);
} else {
buildTree(searchTree.getRightChild(), value);
}
} else {
if (Objects.isNull(searchTree.getLeftChild())) {
SearchTree searchTree1 = new SearchTree();
searchTree1.setValue(value);
searchTree.setLeftChild(searchTree1);
} else {
buildTree(searchTree.getLeftChild(), value);
}
}
return searchTree;
}
public static void main(String[] args) {
int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8};
SearchTree searchTree = new SearchTree();
searchTree.setValue(a[0]);
for (int i = 1; i < a.length; i++) {
searchTree = buildTree(searchTree,a[i]);
}
System.out.println(Json.toJson(searchTree));
}
}
运行的结果如下:
{
"value": 2,
"left_child": {
"value": 1,
"left_child": null,
"right_child": null
},
"right_child": {
"value": 4,
"left_child": {
"value": 3,
"left_child": null,
"right_child": null
},
"right_child": {
"value": 5,
"left_child": null,
"right_child": {
"value": 10,
"left_child": {
"value": 9,
"left_child": {
"value": 8,
"left_child": null,
"right_child": null
},
"right_child": null
},
"right_child": null
}
}
}
}
与我们的目标结果是一致的。
好了,那我们本节就完毕了。可是转过头可能你也发现了,直接生成的这个二叉搜索树似乎有点太长了,层数有点太多了,一般来说,一个长度为8的序列,四层结构的二叉树就可以表现出来了,这里却使用了六层,显然这样的结果不尽人意,同时太深的层数,也增加了查找的时间复杂度。
这就给我们的树提了要求,我们需要将目前构造出来的树平衡一下,让这棵二叉搜索树的左右子树“重量”最好差不多。
平衡二叉搜索树
首先需要掌握两个概念
- 平衡因子
- 旋转
平衡因子就是对于这棵二叉搜索树的每个节点来说,其左子树的高度减去右子树的高度即为该节点的平衡因子,该数值能很快的辨别出该节点究竟是左子树高还是右子树高。在平衡二叉树中规定,当一个节点的平衡因子的绝对值大于等于2的时候,我们就认为该节点不平衡,需要进行调整。那么这种调整的手段称之为节点与节点的旋转,通俗来说,旋转就是指的节点间的指向关系发生变化,在c语言中就是指针指向的切换。
在调用旋转之前,我们需要判断整棵树是否平衡,即,这棵二叉搜索树的所有平衡因子是否有绝对值大于等于2的,如果有,就找出最小的一棵子树。可以确定的是,如果前一次二叉搜索树是平衡的,那么此时如果加一个节点进去,造成不平衡,那么节点从叶子开始回溯,找到的第一个大于等于2的节点势必为最小不平衡子树的根节点。
对于这棵最小不平衡的子树,我们需要得到两个值,即根节点的平衡因子a,以及左右子树根节点中平衡因子绝对值较大者的平衡因子b。
我们可以将需要旋转的类型抽象为以下四种:
1.左左型(正正型,即 a>0 && b>0)
左左型最后想要达到的目标是第二个节点成为根节点,第一个节点成为第二个节点的右节点。
所以用伪代码展示就是(设a1,a2,a3分别为图里面从上到下的三个节点)
a2的右子树 = (合并(a2的右子树,a1的右子树) + a1顶点值) 一起构成的二叉搜索树;
返回 a2
2.左右型(正负型,即 a>0 && b<0)
设a1,a2,a3分别为图里面从上到下的三个节点
首先应该通过将a3和a2调换上下位置,使之变成左左型,然后再调用左左型的方法就完成了。
从左右型调换成左左型,即将a2及其左子树成为a3左子树的一部分,然后将a1的左子树置为a3即可。
伪代码如下:
a3的左子树 = a2及其左子树与a3的左子树合并成的一棵二叉搜索树;
a1的左子树 = a3;
3.右右型(负负型,即 a<0 && b<0)
设a1,a2,a3分别为图里面从上到下的三个节点
右右型与左左型类似,要达到的目的就是a1成为a2左子树的一部分,伪代码为:
a2的左子树 = (合并a2的左子树和a1的左子树)+ a1顶点的值构成的二叉搜索树;
返回a2
4.右左型(负正型,即 a<0 && b>0)
设a1,a2,a3分别为图里面从上到下的三个节点
右左型需要先转换成右右型,然后在调用右右型的方法即可。
从右左型到右右型,即需要将a2及其右子树成为a3右子树的一部分,然后将a1的右子树置为a3即可。
伪代码如下:
a3的右子树 = a2及其右子树与a3的右子树合并成的一棵二叉搜索树;
a1的右子树 = a3;
从上面的分析可以得出,我们不仅仅需要实现旋转的方法,还需要实现合并二叉树等方法,这些方法都是基础方法,读者需要确保会快速写出来。
请读者朋友们根据上面的内容,先尝试写出集中平衡化的方法。
平衡二叉搜索树建树程序
平衡二叉搜索树建树,需要在二叉搜索树建树的基础上加上平衡的过程,即子树之间指针转换的问题,同时,由于这种指针转换引起的子树的子树也会产生不平衡,所以上面提到的四种旋转调整方式都是递归的。
首先,先构建节点基础结构:
public class SearchTree {
private Integer value;
private SearchTree leftChild;
private SearchTree rightChild;
private Integer balanceNumber = 0;
private Integer height = 0;
}
值,高度,平衡因子,左子树,右子树
计算每个节点的高度
这是计算二叉搜索树中每个平衡因子的基础,我们设最低层为高度1,则计算节点高度的代码为:
public static Integer countHeight(SearchTree searchTree) {
if (Objects.isNull(searchTree)) {
return 0;
}
searchTree.setHeight(Math.max(countHeight(searchTree.getLeftChild()),
countHeight(searchTree.getRightChild())) + 1);
return searchTree.getHeight();
}
这里有个半动态规划的结论:当前节点的高度,等于左右子树的最大高度+1;这里的写法有点树形DP的味道。
计算每个节点的平衡因子
public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) {
if (Objects.nonNull(searchTree.getValue())) {
if (Objects.isNull(searchTree.getLeftChild())
&& Objects.nonNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight());
}
if (Objects.nonNull(searchTree.getLeftChild())
&& Objects.isNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight());
}
if (Objects.isNull(searchTree.getLeftChild())
&& Objects.isNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(0);
}
if (Objects.nonNull(searchTree.getLeftChild())
&& Objects.nonNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()
- searchTree.getRightChild().getHeight());
}
}
if (Objects.nonNull(searchTree.getLeftChild())) {
countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1);
}
if (Objects.nonNull(searchTree.getRightChild())) {
countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2);
}
}
本质上讲,平衡因子就是左子树高度减去右子树高度,注意这里左右子树都有可能不存在,所以加入了一堆特判。
判断当前二叉树是否平衡
static class MaxNumber {
public Integer max;
public SearchTree childTree;
public SearchTree fatherTree;
public Integer flag = 0; // 0 代表自己就是根,1代表childTree是左子树,2代表childTree是右子树
}
public static MaxNumber checkBalance(SearchTree searchTree) {
MaxNumber max = new MaxNumber();
max.max = 0;
countBalanceNumber(searchTree, max, null, 0);
return max;
}
public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) {
if (Objects.nonNull(searchTree.getValue())) {
if (Objects.isNull(searchTree.getLeftChild())
&& Objects.nonNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight());
}
if (Objects.nonNull(searchTree.getLeftChild())
&& Objects.isNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight());
}
if (Objects.isNull(searchTree.getLeftChild())
&& Objects.isNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(0);
}
if (Objects.nonNull(searchTree.getLeftChild())
&& Objects.nonNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()
- searchTree.getRightChild().getHeight());
}
}
if (Objects.nonNull(searchTree.getLeftChild())) {
countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1);
}
if (Objects.nonNull(searchTree.getRightChild())) {
countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2);
}
if (Math.abs(searchTree.getBalanceNumber()) >= Math.abs(max.max)) {
if (Math.abs(searchTree.getBalanceNumber()) == Math.abs(max.max)
&& max.childTree == null) {
max.childTree = searchTree;
max.fatherTree = fatherTree;
max.flag = type;
max.max = searchTree.getBalanceNumber();
}
if (Math.abs(searchTree.getBalanceNumber()) > Math.abs(max.max)) {
max.childTree = searchTree;
max.fatherTree = fatherTree;
max.flag = type;
max.max = searchTree.getBalanceNumber();
}
}
}
其中,MaxNumber类是为了保存第一棵不平衡的子树而存在的结构,为了使这棵子树平衡之后能重新回到整棵树中,需要在MaxNumber中存储当前子树父节点,同时标明当前子树是父节点的左子树还是右子树,还是本身。
合并二叉树
public static void getAllValue(SearchTree tree, Set<Integer> sets) {
if (Objects.isNull(tree)) return;
if (Objects.nonNull(tree.getValue())) {
sets.add(tree.getValue());
}
if (Objects.nonNull(tree.getLeftChild())) {
getAllValue(tree.getLeftChild(), sets);
}
if (Objects.nonNull(tree.getRightChild())) {
getAllValue(tree.getRightChild(), sets);
}
}
public static SearchTree mergeTree(SearchTree a, SearchTree b) {
Set<Integer> vals = new HashSet<>();
getAllValue(b, vals);
for (Integer c : vals) {
a = buildTree(a, c);
}
return a;
}
将一棵树转成数字集合,然后通过建树的方式建到另外一棵树上即可。
旋转调整函数
1.左左型旋转
public static SearchTree leftRotate1(SearchTree father, SearchTree searchTree) {
SearchTree b = father;
SearchTree newRight = mergeTree(father.getRightChild(), searchTree.getRightChild());
newRight = buildTree(newRight, b.getValue());
countHeight(newRight);
while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) {
newRight = rotate(checkBalance(newRight).childTree);
countHeight(newRight);
}
searchTree.setRightChild(newRight);
return searchTree;
}
2.右右型旋转
public static SearchTree rightRotate1(SearchTree father, SearchTree searchTree) {
SearchTree b = father;
SearchTree newLeft = mergeTree(father.getLeftChild(), searchTree.getLeftChild());
newLeft = buildTree(newLeft, b.getValue());
countHeight(newLeft);
while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) {
newLeft = rotate(checkBalance(newLeft).childTree);
countHeight(newLeft);
}
searchTree.setLeftChild(newLeft);
return searchTree;
}
3.左右型旋转
public static SearchTree rightRotate2(SearchTree father, SearchTree searchTree) {
SearchTree a1 = father;
SearchTree a2 = searchTree;
SearchTree a3 = searchTree.getRightChild();
SearchTree newLeft = mergeTree(a2.getLeftChild(), a3.getLeftChild());
newLeft = buildTree(newLeft, a2.getValue());
countHeight(newLeft);
while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) {
newLeft = rotate(checkBalance(newLeft).childTree);
countHeight(newLeft);
}
a3.setLeftChild(newLeft);
a1.setLeftChild(a3);
return a1;
}
4.右左型旋转
public static SearchTree leftRotate2(SearchTree father, SearchTree searchTree) {
SearchTree a1 = father;
SearchTree a2 = searchTree;
SearchTree a3 = searchTree.getLeftChild();
SearchTree newRight = mergeTree(a2.getRightChild(), a3.getRightChild());
newRight = buildTree(newRight, a2.getValue());
countHeight(newRight);
while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) {
newRight = rotate(checkBalance(newRight).childTree);
countHeight(newRight);
}
a3.setRightChild(newRight);
a1.setRightChild(a3);
return a1;
}
旋转调用函数:
public static SearchTree rotate(SearchTree searchTree) {
int a = searchTree.getBalanceNumber();
if (Math.abs(a) < 2) {
return searchTree;
}
int b = Objects.isNull(searchTree.getLeftChild()) ? 0
: searchTree.getLeftChild().getBalanceNumber();
int c = Objects.isNull(searchTree.getRightChild()) ? 0
: searchTree.getRightChild().getBalanceNumber();
if (a > 0) {
if (b > 0) {
// TODO: 2022/1/13 左左
searchTree = leftRotate1(searchTree, searchTree.getLeftChild());
} else {
// TODO: 2022/1/13 左右
searchTree = rightRotate2(searchTree, searchTree.getLeftChild());
searchTree = leftRotate1(searchTree, searchTree.getLeftChild());
}
} else {
if (c > 0) {
// TODO: 2022/1/13 右左
searchTree = leftRotate2(searchTree, searchTree.getRightChild());
searchTree = rightRotate1(searchTree, searchTree.getRightChild());
} else {
// TODO: 2022/1/13 右右
searchTree = rightRotate1(searchTree, searchTree.getRightChild());
}
}
return searchTree;
}
整体代码
package com.chaojilaji.book.searchtree;
import com.chaojilaji.auto.autocode.utils.Json;
import com.chaojilaji.book.tree.Handle;
import com.chaojilaji.book.tree.Tree;
import org.omg.CORBA.OBJ_ADAPTER;
import java.util.HashSet;
import java.util.Objects;
import java.util.Set;
public class SearchTreeUtils {
static class MaxNumber {
public Integer max;
public SearchTree childTree;
public SearchTree fatherTree;
public Integer flag = 0; // 0 代表自己就是根,1代表childTree是左子树,2代表childTree是右子树
}
public static SearchTree rotate(SearchTree searchTree) {
int a = searchTree.getBalanceNumber();
if (Math.abs(a) < 2) {
return searchTree;
}
int b = Objects.isNull(searchTree.getLeftChild()) ? 0 : searchTree.getLeftChild().getBalanceNumber();
int c = Objects.isNull(searchTree.getRightChild()) ? 0 : searchTree.getRightChild().getBalanceNumber();
if (a > 0) {
if (b > 0) {
// TODO: 2022/1/13 左左
searchTree = leftRotate1(searchTree, searchTree.getLeftChild());
} else {
// TODO: 2022/1/13 左右
searchTree = rightRotate2(searchTree, searchTree.getLeftChild());
searchTree = leftRotate1(searchTree, searchTree.getLeftChild());
}
} else {
if (c > 0) {
// TODO: 2022/1/13 右左
searchTree = leftRotate2(searchTree, searchTree.getRightChild());
searchTree = rightRotate1(searchTree, searchTree.getRightChild());
} else {
// TODO: 2022/1/13 右右
searchTree = rightRotate1(searchTree, searchTree.getRightChild());
}
}
return searchTree;
}
public static void getAllValue(SearchTree tree, Set<Integer> sets) {
if (Objects.isNull(tree)) return;
if (Objects.nonNull(tree.getValue())) {
sets.add(tree.getValue());
}
if (Objects.nonNull(tree.getLeftChild())) {
getAllValue(tree.getLeftChild(), sets);
}
if (Objects.nonNull(tree.getRightChild())) {
getAllValue(tree.getRightChild(), sets);
}
}
public static SearchTree mergeTree(SearchTree a, SearchTree b) {
Set<Integer> vals = new HashSet<>();
getAllValue(b, vals);
for (Integer c : vals) {
a = buildTree(a, c);
}
return a;
}
public static SearchTree leftRotate1(SearchTree father, SearchTree searchTree) {
SearchTree b = father;
SearchTree newRight = mergeTree(father.getRightChild(), searchTree.getRightChild());
newRight = buildTree(newRight, b.getValue());
countHeight(newRight);
while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) {
newRight = rotate(checkBalance(newRight).childTree);
countHeight(newRight);
}
searchTree.setRightChild(newRight);
return searchTree;
}
public static SearchTree leftRotate2(SearchTree father, SearchTree searchTree) {
SearchTree a1 = father;
SearchTree a2 = searchTree;
SearchTree a3 = searchTree.getLeftChild();
SearchTree newRight = mergeTree(a2.getRightChild(), a3.getRightChild());
newRight = buildTree(newRight, a2.getValue());
countHeight(newRight);
while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) {
newRight = rotate(checkBalance(newRight).childTree);
countHeight(newRight);
// System.out.println(Json.toJson(newRight));
}
a3.setRightChild(newRight);
a1.setRightChild(a3);
return a1;
}
public static SearchTree rightRotate1(SearchTree father, SearchTree searchTree) {
SearchTree b = father;
SearchTree newLeft = mergeTree(father.getLeftChild(), searchTree.getLeftChild());
newLeft = buildTree(newLeft, b.getValue());
countHeight(newLeft);
// TODO: 2022/1/13 合并后的也有可能有问题
while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) {
newLeft = rotate(checkBalance(newLeft).childTree);
countHeight(newLeft);
// System.out.println(Json.toJson(newLeft));
}
searchTree.setLeftChild(newLeft);
return searchTree;
}
public static SearchTree rightRotate2(SearchTree father, SearchTree searchTree) {
SearchTree a1 = father;
SearchTree a2 = searchTree;
SearchTree a3 = searchTree.getRightChild();
SearchTree newLeft = mergeTree(a2.getLeftChild(), a3.getLeftChild());
newLeft = buildTree(newLeft, a2.getValue());
countHeight(newLeft);
while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) {
newLeft = rotate(checkBalance(newLeft).childTree);
countHeight(newLeft);
}
a3.setLeftChild(newLeft);
a1.setLeftChild(a3);
return a1;
}
public static MaxNumber checkBalance(SearchTree searchTree) {
MaxNumber max = new MaxNumber();
max.max = 0;
countBalanceNumber(searchTree, max, null, 0);
return max;
}
public static Integer countHeight(SearchTree searchTree) {
if (Objects.isNull(searchTree)) {
return 0;
}
searchTree.setHeight(Math.max(countHeight(searchTree.getLeftChild()), countHeight(searchTree.getRightChild())) + 1);
return searchTree.getHeight();
}
public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) {
if (Objects.nonNull(searchTree.getValue())) {
if (Objects.isNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight());
}
if (Objects.nonNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight());
}
if (Objects.isNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(0);
}
if (Objects.nonNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) {
searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight() - searchTree.getRightChild().getHeight());
}
}
if (Objects.nonNull(searchTree.getLeftChild())) {
countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1);
}
if (Objects.nonNull(searchTree.getRightChild())) {
countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2);
}
if (Math.abs(searchTree.getBalanceNumber()) >= Math.abs(max.max)) {
if (Math.abs(searchTree.getBalanceNumber()) == Math.abs(max.max) && max.childTree == null) {
max.childTree = searchTree;
max.fatherTree = fatherTree;
max.flag = type;
max.max = searchTree.getBalanceNumber();
}
if (Math.abs(searchTree.getBalanceNumber()) > Math.abs(max.max)) {
max.childTree = searchTree;
max.fatherTree = fatherTree;
max.flag = type;
max.max = searchTree.getBalanceNumber();
}
}
}
public static SearchTree buildTree(SearchTree searchTree, Integer value) {
if (Objects.isNull(searchTree)) {
searchTree = new SearchTree();
}
if (Objects.isNull(searchTree.getValue())) {
searchTree.setValue(value);
return searchTree;
}
if (value >= searchTree.getValue()) {
if (Objects.isNull(searchTree.getRightChild())) {
SearchTree searchTree1 = new SearchTree();
searchTree1.setValue(value);
searchTree.setRightChild(searchTree1);
} else {
buildTree(searchTree.getRightChild(), value);
}
} else {
if (Objects.isNull(searchTree.getLeftChild())) {
SearchTree searchTree1 = new SearchTree();
searchTree1.setValue(value);
searchTree.setLeftChild(searchTree1);
} else {
buildTree(searchTree.getLeftChild(), value);
}
}
return searchTree;
}
public static void main(String[] args) {
// int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8};
int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8, 6, 7};
SearchTree searchTree = new SearchTree();
for (int i = 0; i < a.length; i++) {
searchTree = buildTree(searchTree, a[i]);
countHeight(searchTree);
MaxNumber maxNumber = checkBalance(searchTree);
SearchTree searchTree1 = maxNumber.childTree;
if (Math.abs(searchTree1.getBalanceNumber()) >= 2) {
searchTree1 = rotate(searchTree1);
if (maxNumber.flag == 0) {
maxNumber.fatherTree = searchTree1;
searchTree = searchTree1;
} else if (maxNumber.flag == 1) {
maxNumber.fatherTree.setLeftChild(searchTree1);
} else if (maxNumber.flag == 2) {
maxNumber.fatherTree.setRightChild(searchTree1);
}
countHeight(searchTree);
}
}
System.out.println("最终为\n" + Json.toJson(searchTree));
}
}
以序列2, 4, 1, 3, 5, 10, 9, 8, 6, 7为例,构造的平衡二叉搜索树结构为
{
"value": 4,
"left_child": {
"value": 2,
"left_child": {
"value": 1,
"left_child": null,
"right_child": null,
"balance_number": 0,
"height": 1
},
"right_child": {
"value": 3,
"left_child": null,
"right_child": null,
"balance_number": 0,
"height": 1
},
"balance_number": 0,
"height": 2
},
"right_child": {
"value": 8,
"left_child": {
"value": 6,
"left_child": {
"value": 5,
"left_child": null,
"right_child": null,
"balance_number": 0,
"height": 1
},
"right_child": {
"value": 7,
"left_child": null,
"right_child": null,
"balance_number": 0,
"height": 1
},
"balance_number": 0,
"height": 2
},
"right_child": {
"value": 10,
"left_child": {
"value": 9,
"left_child": null,
"right_child": null,
"balance_number": 0,
"height": 1
},
"right_child": null,
"balance_number": 1,
"height": 2
},
"balance_number": 0,
"height": 3
},
"balance_number": -1,
"height": 4
}
以上就是详解Java数据结构之平衡二叉树的详细内容,更多关于Java平衡二叉树的资料请关注编程网其它相关文章!