记一次 网易易盾滑块验证分析并通过
操作环境
- win10 、 mac
- Python3.9
- selenium、PIL、numpy、scipy、matplotlib
分析
网易易盾滑块验证,就长下面这个样子
具体验证原理有兴趣的可自行查询官方文档:网易易盾开发文档
话不多少,借助之前写阿里云盾滑块和极验滑块的经验,直接上代码,详细可参考:[python3 破解 geetest(极验)的滑块验证码功能]极验滑块验证
解决方案
使用selenium请求url,并触发滑块验证
def open(self):
# 初始化浏览器
wait = WebDriverWait(self.driver, 5)
# 点击对应标签
self.driver.get(cfg.TEST_URL)
button = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR, cfg.HD_SELECOTR)))
button.click()
self.tc_item = wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR, cfg.TC_SELECOTR)))
self.tc_item.click()
# 得到背景和滑块的item, 以及滑动按钮
time.sleep(2)
self.background_item = wait.until(
EC.presence_of_element_located((By.CSS_SELECTOR, cfg.BG_SELECOTR))
)
self.slider_item = wait.until(
EC.presence_of_element_located((By.CSS_SELECTOR, cfg.HK_SELECOTR))
)
self.slider_btn = wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, cfg.HD_BTN)))
self.offset = cfg.offset
self.background_path = cfg.background_path
self.slider_path = cfg.slider_path
获取验证图片并计算滑块距离
def get_images(self):
"""
获取验证码图片
:return: 图片的location信息
"""
url = selenium_item.get_attribute("src")
if url is not None:
response = requests.get(url)
with open(path, "wb") as f:
f.write(response.content)
img = Image.open(path).resize(size)
img.save(path)
else:
class_name = selenium_item.get_attribute("class")
js_cmd = (
'return document.getElementsByClassName("%s")[0].toDataURL("image/png");'
% class_name
)
im_info = self.driver.execute_script(js_cmd)
im_base64 = im_info.split(",")[1]
im_bytes = base64.b64decode(im_base64)
with open(path, "wb") as f:
f.write(im_bytes)
img = Image.open(path).resize(size)
img.save(path)
def compute_gap(self, array):
"""
计算缺口偏移
"""
grad = np.array(array > 0)
h, w = grad.shape
# img_show(grad)
rows_sum = np.sum(grad, axis=1)
cols_sum = np.sum(grad, axis=0)
left, top, bottom = 0, 0, h
# get the top index
p = np.max(rows_sum) * 0.5
for i in range(h):
if rows_sum[i] > p:
top = i
break
for i in range(h - 1, -1, -1):
if rows_sum[i] > p:
bottom = i
break
p = np.max(cols_sum) * 0.5
for i in range(w):
if cols_sum[i] > p:
left = i
break
return top, bottom + 1, left
生成滑动轨迹
def get_tracks(distance):
v = random.randint(0, 2)
t = 1
tracks = []
cur = 0
mid = distance * 0.8
while cur < distance:
if cur < mid:
a = random.randint(2, 4)
else:
a = -random.randint(3, 5)
s = v * t + 0.5 * a * t ** 2
cur += s
v = v + a * t
tracks.append(round(s))
tracks.append(distance - sum(tracks))
return tracks
滑动模块
def move_to_gap(self, track):
"""滑动滑块"""
print('第一步,点击滑动按钮')
slider = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'geetest_slider_button')))
ActionChains(self.driver).click_and_hold(slider).perform()
time.sleep(1)
print('第二步,拖动元素')
for track in track:
ActionChains(self.driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y)
time.sleep(0.0001)
效果
资源下载
https://download.csdn.net/download/qq_38154948/85343666
到此这篇关于Python 网易易盾滑块验证功能的实现的文章就介绍到这了,更多相关Python 易盾滑块验证内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!