文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

关于TensorFlow全面分析

懒人大天才

懒人大天才

2024-04-23 22:41

关注

  欢迎各位阅读本篇,TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。本篇文章讲述了关于TensorFlow全面分析,编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!

关于TensorFlow全面分析_机器学习_数据分析_计算机_编程学习网教育

  今天想来看看 AI 是怎样作曲的。

  本文会用 TensorFlow 来写一个音乐生成器。

  当你对一个机器人说: 我想要一种能够表达出希望和奇迹的歌曲时,发生了什么呢?

  计算机会首先把你的语音转化成文字,并且提取出关键字,转化成词向量。然后会用一些打过标签的音乐的数据,这些标签就是人类的各种情感。接着通过在这些数据上面训练一个模型,模型训练好后就可以生成符合要求关键词的音乐。程序最终的输出结果就是一些和弦,他会选择最贴近主人所要求的情感关键词的一些和弦来输出。当然你不只是可以听,也可以作为创作的参考,这样就可以很容易地创作音乐,即使你还没有做到刻意练习1万小时。

  机器学习其实是为了扩展我们的大脑,扩展我们的能力。

机器学习其实是为了扩展我们的大脑,扩展我们的能力。

  DeepMind 发表了一篇论文,叫做WaveNet, 这篇论文介绍了音乐生成和文字转语音的艺术。

  通常来讲,语音生成模型是串联。这意味着如果我们想从一些文字的样本中来生成语音的话,是需要非常大量的语音片段的数据库,通过截取它们的一部分,并且再重新组装到一起,来组成一个完整的句子。

  生成音乐也是同样的道理,但是它有一个很大的难点:就是当你把一些静止的组件组合到一起的时候,生成声音需要很自然,并且还要有情感,这一点是非常难的。

  一种理想的方式是,我们可以把所有生成音乐所需要的信息存到模型的参数里面。也就是那篇论文里讲的事情。

  我们并不需要把输出结果传给信号处理算法来得到语音信号,而是直接处理语音信号的波。

  他们用的模型是 CNN。这个模型的每一个隐藏层中,每个扩张因子,可以互联,并呈指数型的增长。每一步生成的样本,都会被重新投入网络中,并且用于产生下一步。

  我们可以来看一下这个模型的图。输入的数据,是一个单独的节点,它作为粗糙的音波,首先需要进行一下预处理,以便于进行下面的操作。

  接着我们对它进行编码,来产生一个 Tensor,这个 Tensor 有一些 sample 和 channel。然后把它投入到 CNN 网络的第一层中。这一层会产生 channel 的数量,为了进行更简单地处理。然后把所有输出的结果组合在一起,并且增加它的维度。再把维度增加到原来的 channel 的数量。把这个结果投入到损失函数中,来衡量我们的模型训练的如何。最后,这个结果会被再次投入到网络中,来生成下一个时间点所需要的音波数据。重复这个过程就可以生成更多的语音。这个网络很大,在他们的 GPU 集群上需要花费九十分钟,并且仅仅只能生成一秒的音频。

  接下来我们会用一个更简单的模型在 TensorFlow 上来实现一个音频生成器。

  1.引入packaGEs:

  数据科学包 Numpy ,数据分析包 Pandas,tqdm 可以生成一个进度条,显示训练时的进度。

  import numpy as np

  import pandas as pd

  import msgpack

  import glob

  import tensorflow as tf

  from tensorflow.Python.oPS import control_flow_ops

  from tqdm import tqdm

  import midi_manipulation

  我们会用到一种神经网络的模型 RBM-Restricted Boltzmann Machine 作为生成模型。

  它是一个两层网络:第一层是可见的,第二层是隐藏层。同一层的节点之间没有联系,不同层之间的节点相互连接。每一个节点都要决定它是否需要将已经接收到的数据发送到下一层,而这个决定是随机的。

  2.定义超参数:

  先定义需要模型生成的 note 的 range

  lowest_note = midi_manipulation.lowerBound #the index of the lowest note on the piano roll

  highest_note = midi_manipulation.uPPerBound #the index of the highest note on the piano roll

  note_range = highest_note-lowest_note #the note range

  接着需要定义 timestep ,可见层和隐藏层的大小。

  num_timesteps = 15 #This is the number of timesteps that we will create at a time

  n_visible = 2*note_range*num_timesteps #This is the size of the visible layer.

  n_hiDDen = 50 #This is the size of the hidden layer

  训练次数,批量处理的大小,还有学习率。

  num_epochs = 200 #The number of training epochs that we are going to run. For each epoch we go through the entire data set.

  BAtch_size = 100 #The number of training examples that we are going to send through the RBM at a time.

  lr = tf.constant(0.005, tf.float32) #The learning rate of our model

  3.定义变量:

  x 是投入网络的数据

  w 用来存储权重矩阵,或者叫做两层之间的关系

  此外还需要两种 bias,一个是隐藏层的 bh,一个是可见层的 bv

  x = tf.placeholder(tf.float32, [None, n_visible], name="x") #The placeholder variable that holds our data

  W = tf.Variable(tf.random_normal([n_visible, n_hidden], 0.01), name="W") #The weightMATrix that stores the edge weights

  bh = tf.Variable(tf.zeros([1, n_hidden], tf.float32, name="bh")) #The bias vector for the hidden layer

  bv = tf.Variable(tf.zeros([1, n_visible], tf.float32, name="bv")) #The bias vector for the visible layer

  接着,用辅助方法 gibbs_sample 从输入数据 x 中建立样本,以及隐藏层的样本:

  gibbs_sample 是一种可以从多重概率分布中提取样本的算法。

  它可以生成一个统计模型,其中,每一个状态都依赖于前一个状态,并且随机地生成符合分布的样本。

  #The sample of x

  x_sample = gibbs_sample(1)

  #The sample of the hidden nodes, starting from the visible state of x

  h = sample(tf.sigmoid(tf.matMUl(x, W) + bh))

  #The sample of the hidden nodes, starting from the visible state of x_sample

  h_sample = sample(tf.sigmoid(tf.matmul(x_sample, W) + bh))

  4.更新变量:

  size_bt = tf. CA

  st(tf.shape(x)[0], tf.float32)

  W_adder = tf.mul(lr/size_bt, tf.sub(tf.matmul(tf.transpose(x), h), tf.matmul(tf.transpose(x_sample), h_sample)))

  bv_adder = tf.mul(lr/size_bt, tf.reduce_sum(tf.sub(x, x_sample), 0, True))

  bh_adder = tf.mul(lr/size_bt, tf.reduce_sum(tf.sub(h, h_sample), 0, True))

  #When we do sess.run(updt), TensorFlow will run all 3 update steps

  updt = [W.assign_add(W_adder), bv.assign_add(bv_adder), bh.assign_add(bh_adder)]

  5.运行 Graph 算法图:

  1.先初始化变量

  with tf.Session() as sess:

  #First, we train the model

  #initialize the variables of the model

  init = tf.initialize_all_variables()

  sess.run(init)

  首先需要 reshape 每首歌,以便于相应的向量表示可以更好地被用于训练模型。

  for epoch in tqdm(range(num_epochs)):

  for song in sonGS:

  #The songs are stored in a time x notes format. The size of each song is timesteps_in_song x 2*note_range

  #Here we reshape the songs so that each training example is a vector with num_timesteps x 2*note_range elements

  song = np.array(song)

  song = song[:np.floor(song.shape[0]/num_timesteps)*num_timesteps]

  song = np.reshape(song, [song.shape[0]/num_timesteps, song.shape[1]*num_timesteps])

  2.接下来就来训练 RBM 模型,一次训练一个样本

  for i in range(1, len(song), batch_size):

  tr_x = song[i:i+batch_size]

  sess.run(updt, feed_dict={x: tr_x})

  模型完全训练好后,就可以用来生成 music 了。

  3.需要训练 Gibbs chain

  其中的 visible nodes 先初始化为0,来生成一些样本。

  然后把向量 reshape 成更好的格式来 playback。

  sample = gibbs_sample(1).eval(session=sess, feed_dict={x: np.zeros((10, n_visible))})

  for i in range(sample.shape[0]):

  if not any(sample[i,:]):

  continue

  #Here we reshape the vector to be time x notes, and then save the vector as a midi file

  S = np.reshape(sample[i,:], (num_timesteps, 2*note_range))

  4.最后,打印出生成的和弦

  midi_manipulation.noteStateMatrixToMidi(S, "generated_chord_{}".format(i))1212

  综上,就是用 CNN 来参数化地生成音波,

  用 RBM 可以很容易地根据训练数据生成音频样本,

  Gibbs 算法可以基于概率分布帮我们得到训练样本。

  最后送上Siraj 的原始视频和源代码链接。

  TensorFlow:

  支持算法

  TensorFlow 表达了高层次的机器学习计算,大幅简化了第一代系统,并且具备更好的灵活性和可延展性。TensorFlow一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从电话、单个CPU / GPU到成百上千GPU卡组成的分布式系统。

  从目前的文档看,TensorFlow支持CNN、RNN和LSTM算法,这都是目前在Image,Speech和NLP最流行的深度神经网络模型。[2]

  开源意义

  这一次的Google开源深度学习系统TensorFlow在很多地方可以应用,如语音识别,自然语言理解,计算机视觉,广告等等。但是,基于以上论点,我们也不能过分夸大TensorFlow这种通用深度学习框架在一个工业界机器学习系统里的作用。在一个完整的工业界语音识别系统里, 除了深度学习算法外,还有很多工作是专业领域相关的算法,以及海量数据收集和工程系统架构的搭建。

  不过总的来说,这次 谷歌的开源很有意义,尤其是对于中国的很多创业公司来说,他们大都没有能力理解并开发一个与国际同步的深度学习系统,所以TensorFlow会大大降低深度学习在各个行业中的应用难度。

  中文文档

  官方文档中文版通过协同翻译,现已上线,国内的爱好者可以通过GitHub协作的方式查看并完善此中文版文档。

  版本发布

  2017年2月16日,首届TensorFlow 开发者峰会在美国加州山景城召开,其最新版本TensorFlow 1.0 也于峰会上正式发布。

相信最后大家阅读完毕本篇文章,肯定学到了不少知识吧?

  小结:相信最后大家阅读完毕本篇文章,肯定学到了不少知识吧?其实大家私下还得多多自学,当然如果大家还想了解更多方面的详细内容的话呢,不妨关注编程学习网教育平台,在这个学习知识的天堂中,您肯定会有意想不到的收获的!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-运维
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯