这篇文章主要介绍“python数据处理之Pandas类型转换怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“python数据处理之Pandas类型转换怎么实现”文章能帮助大家解决问题。
转换为字符串类型
tips['sex_str'] = tips['sex'].astype(str)
转换为数值类型
转为数值类型还可以使用to_numeric()函数
DataFrame每一列的数据类型必须相同,当有些数据中有缺失,但不是NaN时(如missing,null等),会使整列数据变成字符串类型而不是数值型,这个时候可以使用to_numeric处理
#创造包含'missing'为缺失值的数据tips_sub_miss = tips.head(10)tips_sub_miss.loc[[1,3,5,7],'total_bill'] = 'missing'tips_sub_miss
自动转换为了字符串类型:
使用astype转换报错:
tips_sub_miss['total_bill'].astype(float)
使用to_numeric()函数:
直接使用to_numeric()函数还是会报错,添加errors参数
errors
可变参数:
ignore
遇到错误跳过 (只是跳过没转类型)coerce
遇到不能转的值强转为NaN
pd.to_numeric(tips_sub_miss['total_bill'],errors='ignore')
pd.to_numeric(tips_sub_miss['total_bill'],errors='coerce')
to_numeric向下转型:
downcast
参数
integer
和signed
最小的有符号int dtypefloat
最小的float dtypeunsigned
最小的无符号int dtype
downcast参数设置为float之后, total_bill的数据类型由float64变为float32
pd.to_numeric(tips_sub_miss['total_bill'],errors='coerce',downcast='float')
分类数据(Category)
利用pd.Categorical()
创建categorical数据,Categorical()常用三个参数
参1 values,如果values中的值,不在categories参数中,会被NaN代替
参2 categories,指定可能存在的类别数据
参3 ordered, 是否指定顺序
s = pd.Series(pd.Categorical(["a","b","c","d"],categories=['c','b','a']))
分类数据排序会自动根据分类排序:
ordered指定顺序:
from pandas.api.types import CategoricalDtype# 创建一个分类 ordered 指定顺序cat = CategoricalDtype(categories=['B','D','A','C'],ordered=True)# 指定series_cat1转换类型为创建的分类类型series_cat1 = series_cat.astype(cat)print(series_cat.sort_values())print(series_cat1.sort_values())
数据类型小结
知识点 | 内容 |
---|---|
Numpy的特点 | 1. Numpy是一个高效科学计算库,Pandas的数据计算功能是对Numpy的封装 2. ndarray是Numpy的基本数据结构,Pandas的Series和DataFrame好多函数和属性都与ndarray一样 3. Numpy的计算效率比原生Python效率高很多,并且支持并行计算 |
Pandas数据类型转换 | 1. Pandas除了数值型的int 和 float类型外,还有object ,category,bool,datetime类型 2. 可以通过as_type 和 to_numeric 函数进行数据类型转换 |
Pandas 分类数据类型 | 1. category类型,可以用来进行排序,并且可以自定义排序顺序 2. CategoricalDtype可以用来定义顺序 |
关于“python数据处理之Pandas类型转换怎么实现”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。