文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Redis 缓存淘汰策略和事务实现乐观锁详情

2022-07-21 13:00

关注

缓存淘汰策略

LRU原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:

Redis 缓存淘汰策略和事务实现乐观锁详情

在Java中可以使用LinkHashMap去实现LRU利用哈希链表实现:

Redis 缓存淘汰策略和事务实现乐观锁详情

Redis缓存淘汰策略

设置最大缓存

在 redis 中,允许用户设置最大使用内存大小maxmemory,默认为0,没有指定最大缓存,如果有新的数据添加,超过最大内存,则会使redis崩溃,所以一定要设置。

redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。

淘汰策略

redis淘汰策略配置:maxmemory-policy voltile-lru,支持热配置

redis 提供 6种数据淘汰策略:

Redis事务

Redis事务介绍

MULTI

用于标记事务块的开始。 Redis会将后续的命令逐个放入队列中,然后使用EXEC命令原子化地执行这个命令序列。

语法:

multi

EXEC

在一个事务中执行所有先前放入队列的命令,然后恢复正常的连接状态

语法:

exec

DISCARD

清除所有先前在一个事务中放入队列的命令,然后恢复正常的连接状态。

语法:

discard

WATCH

当某个[事务需要按条件执行]时,就要使用这个命令将给定的[键设置为受监控]的状态。

语法:

watch key [key…]

注意事项:使用该命令可以实现 Redis 的乐观锁。

UNWATCH

清除所有先前为一个事务监控的键

语法:

unwatch

命令图解:

Redis 缓存淘汰策略和事务实现乐观锁详情

事务演示:

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set s1 111
QUEUED
127.0.0.1:6379> hset set1 name zhangsan
QUEUED
127.0.0.1:6379> exec
1) OK
2) (integer) 1
127.0.0.1:6379> multi
OK
127.0.0.1:6379> set s2 222
QUEUED
127.0.0.1:6379> hset set2 age 20
QUEUED
127.0.0.1:6379> discard
OK
127.0.0.1:6379> exec (error) ERR EXEC without MULTI 
127.0.0.1:6379> watch s1
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> set s1 555
QUEUED 127.0.0.1:6379> exec # 此时在没有exec之前,通过另一个命令窗口对监控的s1字段进行修改 
(nil)
127.0.0.1:6379> get s1
111

Redis 不支持事务回滚(为什么呢)

大多数事务失败是因为语法错误或者类型错误,这两种错误,在开发阶段都是可以预见的Redis 为了性能方面就忽略了事务回滚。

Redis乐观锁

乐观锁基于CAS(Compare And Swap)思想(比较并替换),是不具有互斥性,不会产生锁等待而消耗资源,但是需要反复的重试,但也是因为重试的机制,能比较快的响应。因此我们可以利用redis来

实现乐观锁。具体思路如下:

public void watch() {
	try {
		String watchKeys = "watchKeys";
		//初始值 value=1
		jedis.set(watchKeys, 1);
		//监听key为watchKeys的值
		jedis.watch(watchkeys);
		//开启事务
		Transaction tx = jedis.multi();
		//watchKeys自增加一
		tx.incr(watchKeys);
		//执行事务,如果其他线程对watchKeys中的value进行修改,则该事务将不会执行
		//通过redis事务以及watch命令实现乐观锁
		List<Object> exec = tx.exec();
		if (exec == null) {
			System.out.println("事务未执行");
		} else {
			System.out.println("事务成功执行,watchKeys的value成功修改");
		}
	} catch (Exception e) {
		e.printStackTrace();
	} finally {
		jedis.close();
	}
}

Redis乐观锁实现秒杀

public class RedisLock {
    public static void main(String[] arg) {
        //库存key 
        String redisKey = "stock";
        ExecutorService executorService = Executors.newFixedThreadPool(20);
        try {
            Jedis jedis = new RedisProperties.Jedis("127.0.0.1", 6378);
            // 可以被秒杀的库存的初始值,库存总共20个
            jedis.set(redisKey, "0");
            jedis.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
        for (int i = 0; i < 1000; i++) {
            executorService.execute(() -> {
                Jedis jedis1 = new Jedis("127.0.0.1", 6378);
                try {
                    jedis1.watch(redisKey);
                    String redisValue = jedis1.get(redisKey);
                    int valInteger = Integer.valueOf(redisValue);
                    String userInfo = UUID.randomUUID().toString();
                    // 没有秒完
                    if (valInteger < 20) {
                        Transaction tx = jedis1.multi();
                        tx.incr(redisKey);
                        List list = tx.exec();
                        // 秒成功 失败返回空list而不是空
                        if (list != null && list.size() > 0) {
                            System.out.println("用户:" + userInfo + ",秒杀成 功!当前成功人数:" + (valInteger + 1));
                        }
                        // 版本变化,被别人抢了。
                        else {
                            System.out.println("用户:" + userInfo + ",秒杀失 败");
                        }
                    }
                    // 秒完了
                    else {
                        System.out.println("已经有20人秒杀成功,秒杀结束");
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    jedis1.close();
                }
            });
        }
        executorService.shutdown();
    }
}

到此这篇关于Redis 缓存淘汰策略和事务实现乐观锁详情的文章就介绍到这了,更多相关Redis 缓存淘汰策略内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯