文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PyTorch与PyTorch Geometric的安装过程

2023-05-14 17:04

关注

PyTorch与PyTorch Geometric的安装

GPU与CUDA,Python,PyTorch的匹配

1. 查看Linux系统中GPU的基础信息/NVIDIA Driver Version

nvidia-smi

GPU的基础信息

nvidia-smi是nvidia 的系统管理界面 ,其中smi是System management interface的缩写,它可以收集各种级别的信息,查看显存使用情况。此外, 可以启用和禁用 GPU 配置选项 (如 ECC 内存功能)。

系统的Nvidia Driver Version决定着系统最高可以支持什么版本的cuda和cudatoolkit,Nvidia Driver是向下兼容的,详情如下(见Table 3. CUDA Toolkit and Corresponding Driver Versions):

2. 查看当前CUDA版本:

cat  /usr/local/cuda/version.txt

CUDA Version

我自己的环境最高可支持10.1版本的cuda和cudatoolkit,当前是10.0,版本向下兼容,并无什么问题。

3. CUDA Toolkit匹配PyTorch

CUDA Toolkit 和PyTorch的对应关系(见官网)

在这里插入图片描述

! 注意事项:服务器本身的CUDA版本与虚拟环境中安装的cudatoolkit包没有太大关系,一般安装pytorch时需要考虑的cuda版本指的应该是虚拟环境中安装的cudatoolkit包的版本

由于我需要用到v1.6.0的Pytorch,因此自己在虚拟环境里安装v10.1的CUDA Toolkit,系统GPU可接受最高版本v10.1。
torch与torchvision对应关系如下(详情见PyTorch / Vision):

torch与torchvision对应关系

因此,我需要安装的如下:
CUDA Toolkit == 10.1
Python == 3.7
PyTorch == 1.6

安装PyTorch

pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

安装完成后可通过以下命令检查torch版本及对应的CUDA版本:

python -c "import torch; print(torch.__version__)"
python -c "import torch; print(torch.version.cuda)"

再通过以下命令查看GPU是否可用:

python

>>> import torch
>>> torch.cuda.is_available() 	# GPU是否可用
>>> torch.cuda.device_count()	# GPU数量
>>> torch.cuda.current_device()	# 当前GPU
>>> exit()

注意,GPU devices从0开始编号。

安装PyTorch Geometric

1. 快速安装

根据官网,如果PyTorch版本≥1.8.0,可以快速下载:

2. 自定义安装

自定义下载需要根据当前的PyTorch版本和CUDA版本下载相关的依赖,下载命令如下:

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-geometric

其中, ${TORCH}替换为当前环境下的PyTorch版本,目前支持1.4.0、1.5.0、1.6.0、1.7.0、1.7.1、1.8.0、1.8.1、和1.9.0; ${CUDA}替换为指定的CUDA版本,目前支持cpu、cu92、cu101、cu102、cu110和cu111。

例如对于PyTorch 1.6.0和CUDA 10.1:

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.6.0+cu101.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.6.0+cu101.html
pip install torch-geometric

3. 版本依赖

使用自定义安装时,依然可能会出现安装失败的问题,因为pytorch_geometric几个相关库之间有比较强的依赖关系,建议是在自定义安装的基础上指定对应库的版本,例如对于pytorch1.6.0和cuda10.1:

pip install torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.6.0+cu101.html
pip install torch-cluster==1.5.8 -f https://pytorch-geometric.com/whl/torch-1.6.0+cu101.html
pip install torch-sparse==0.6.7 -f https://pytorch-geometric.com/whl/torch-1.6.0+cu101.html
pip install torch-spline-conv==1.2.0 -f https://pytorch-geometric.com/whl/torch-1.6.0+cu101.html
pip install torch-geometric==1.6.1 -f https://pytorch-geometric.com/whl/torch-1.6.0+cu101.html

到此这篇关于PyTorch与PyTorch Geometric的安装的文章就介绍到这了,更多相关PyTorch Geometric安装内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯