文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python中的图像处理之Python图像平滑操作

2024-04-02 19:55

关注

前言

随着人工智能研究的不断兴起,Python的应用也在不断上升,由于Python语言的简洁性、易读性以及可扩展性,特别是在开源工具和深度学习方向中各种神经网络的应用,使得Python已经成为最受欢迎的程序设计语言之一。由于完全开源,加上简单易学、易读、易维护、以及其可移植性、解释性、可扩展性、可扩充性、可嵌入性:丰富的库等等,自己在学习与工作中也时常接触到Python,这个系列文章的话主要就是介绍一些在Python中常用一些例程进行仿真演示!

本系列文章主要参考杨秀章老师分享的代码资源,杨老师博客主页是Eastmount,杨老师兴趣广泛,不愧是令人膜拜的大佬,他过成了我理想中的样子,希望以后有机会可以向他请教学习交流。

因为自己是做图像语音出身的,所以结合《Python中的图像处理》,学习一下Python,OpenCV已经在Python上进行了多个版本的维护,所以相比VS,Python的环境配置相对简单,缺什么库直接安装即可。本系列文章例程都是基于Python3.8的环境下进行,所以大家在进行借鉴的时候建议最好在3.8.0版本以上进行仿真。本文继续来对本书第十章的后4个例程进行介绍。

一. Python准备

如何确定自己安装好了python

win+R输入cmd进入命令行程序

在这里插入图片描述

点击“确定”

在这里插入图片描述

输入:python,回车

在这里插入图片描述

看到Python相关的版本信息,说明Python安装成功。

二. Python仿真

(1)新建一个chapter10_06.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('te.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#双边滤波
result = cv2.bilateralFilter(source, 15, 150, 150)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像', '双边滤波']  
images = [source, result]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件
输入eixt()退出python,输入命令行进入工程文件目录

在这里插入图片描述

输入以下命令,跑起工程

python chapter10_06.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(2)新建一个chapter10_07.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('te.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#均值滤波
result1 = cv2.blur(source, (5,5))
result2 = cv2.blur(source, (10,10))

#方框滤波
result3 = cv2.boxFilter(source, -1, (5,5), normalize=1)
result4 = cv2.boxFilter(source, -1, (2,2), normalize=0)

#高斯滤波
result5 = cv2.GaussianBlur(source, (3,3), 0)
result6 = cv2.GaussianBlur(source, (15,15), 0)

#中值滤波
result7 = cv2.medianBlur(source, 3)

#高斯双边滤波
result8 =cv2.bilateralFilter(source, 15, 150, 150)

#显示图形
titles = ['Source', 'Blur 5*5', 'Blur 10*10', 'BoxFilter 5*5',
          'BoxFilter 2*2', 'GaussianBlur 3*3', 'GaussianBlur 15*15',
          'medianBlur', 'bilateralFilter']  
images = [source, result1, result2, result3,
          result4, result5, result6, result7, result8]  
for i in range(9):  
   plt.subplot(3,3,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件输入以下命令,跑起工程

python chapter10_07.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(3)新建一个chapter10_08.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('test01_yn.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#中值滤波
result1 = cv2.medianBlur(source, 3)

#高斯双边滤波
result2 =cv2.bilateralFilter(source, 15, 150, 150)

#均值迁移
result3 = cv2.pyrMeanShiftFiltering(source, 20, 50)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像',  '中值滤波', '双边滤波', '均值迁移']  
images = [source, result1, result2, result3]  
for i in range(4):  
   plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件输入以下命令,跑起工程

python chapter10_08.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(4)新建一个chapter10_09.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding:utf-8 -*-
import cv2
import numpy as np

#读取图片
img = cv2.imread("te.png", cv2.IMREAD_UNCHANGED)
rows, cols, chn = img.shape

#加噪声
for i in range(5000):    
    x = np.random.randint(0, rows) 
    y = np.random.randint(0, cols)    
    img[x,y,:] = 255

cv2.imshow("noise", img)
           
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

保存.py文件输入以下命令,跑起工程

python chapter10_09.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

三. 小结

本文主要介绍在Python中调用OpenCV库对图像进行图像平滑滤波处理与图像加噪处理,如双边滤波,高斯双边滤波,图像加随机噪声等操作。由于本书的介绍比较系统全面,所以会出一个系列文章进行全系列仿真实现,感兴趣的还是建议去原书第十章深入学习理解,下一篇文章将继续介绍第十一章节的5例仿真实例。每天学一个Python小知识,大家一起来学习进步阿!

到此这篇关于Python中的图像处理之Python图像平滑处理操作的文章就介绍到这了,更多相关Python图像平滑内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯