文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【python】爬取豆瓣电影排行榜Top250存储到Excel文件中【附源码】

2024-01-21 16:22

关注

英杰社区icon-default.png?t=N7T8https://bbs.csdn.net/topics/617804998

一、背景     

   近年来,Python在数据爬取和处理方面的应用越来越广泛。本文将介绍一个基于Python的爬虫程

序,用于抓取豆瓣电影Top250的相关信息,并将其保存为Excel文件。

        程序包含以下几个部分:

           导入模块:程序导入了 BeautifulSoup、re、urllib.request、urllib.error、xlwt等模块。

        定义函数:

  • geturl(url):接收一个URL参数,返回该URL页面内容。
  • getdata(baseurl):接收一个基础URL参数,遍历每一页的URL,获取电影信息数据,以列表形式返回。
  • savedata(datalist,savepath):接收电影信息数据和保存路径参数,将数据保存到Excel文件中。

二、导入必要的模块:

       代码首先导入了需要使用的模块:requests、lxml和csv。

import requests
from lxml import etree
import csv

        如果出现模块报错

c124a1693bfc457ba1f2909ee9d299fc.png

        进入控制台输入:建议使用国内镜像源

pip install 模块名称 -i https://mirrors.aliyun.com/pypi/simple

         我大致罗列了以下几种国内镜像源:

清华大学
https://pypi.tuna.tsinghua.edu.cn/simple

阿里云
https://mirrors.aliyun.com/pypi/simple/

豆瓣
https://pypi.douban.com/simple/ 

百度云
https://mirror.baidu.com/pypi/simple/

中科大
https://pypi.mirrors.ustc.edu.cn/simple/

华为云
https://mirrors.huaweicloud.com/repository/pypi/simple/

腾讯云
https://mirrors.cloud.tencent.com/pypi/simple/

    

 三、定义了函数来解析每个电影的信息:

        设置了请求头部信息,以模拟浏览器的请求,函数返回响应数据的JSON格式内容。

def getSource(url):
    # 反爬 填写headers请求头
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36'
    }

    response = requests.get(url, headers=headers)
    # 防止出现乱码
    response.encoding = 'utf-8'
    # print(response.text)
    return response.text

        如何获取请求头:

        火狐浏览器:

  1. 打开目标网页并右键点击页面空白处。
  2. 选择“检查元素”选项,或按下快捷键Ctrl + Shift + C(Windows)
  3. 在开发者工具窗口中,切换到“网络”选项卡。
  4. 刷新页面以捕获所有的网络请求。
  5. 在请求列表中选择您感兴趣的请求。
  6. 在右侧的“请求标头”或“Request Headers”部分,即可找到请求头信息。

     将以下请求头信息复制出来即可

cb3f2b1cef914937a402d034c348f8ef.png

 四、源代码:

        该爬虫程序使用了Python的第三方库BeautifulSoup和正则表达式模块,通过解析HTML页面并进行匹配,提取了电影详情链接、图片链接、影片中文名、影片外国名、评分、评价数、概述以及相关信息等数据,最后将这些数据保存到Excel文件中。

0efdb231219647c6988e4032f0cb1c95.png

from bs4 import BeautifulSoup
import  re  #正则表达式,进行文字匹配
import urllib.request,urllib.error #指定URL,获取网页数据
import xlwt  #进行excel操作


def main():
    baseurl = "https://movie.douban.com/top250?start="
    datalist= getdata(baseurl)
    savepath = ".\\豆瓣电影top250.xls"
    savedata(datalist,savepath)

#compile返回的是匹配到的模式对象
findLink = re.compile(r'')  # 正则表达式模式的匹配,影片详情
findImgSrc = re.compile(r'(.*)')  # 影片片名
findRating = re.compile(r'(.*)')  # 找到评分
findJudge = re.compile(r'(\d*)人评价')  # 找到评价人数 #\d表示数字
findInq = re.compile(r'(.*)')  # 找到概况
findBd = re.compile(r'

https://blog.csdn.net/m0_73367097/article/details/(.*?)

', re.S) # 找到影片的相关内容,如导演,演员等 ##获取网页数据 def getdata(baseurl): datalist=[] for i in range(0,10): url = baseurl+str(i*25) ##豆瓣页面上一共有十页信息,一页爬取完成后继续下一页 html = geturl(url) soup = BeautifulSoup(html,"html.parser") #构建了一个BeautifulSoup类型的对象soup,是解析html的 for item in soup.find_all("div",class_='item'): ##find_all返回的是一个列表 data=[] #保存HTML中一部电影的所有信息 item = str(item) ##需要先转换为字符串findall才能进行搜索 link = re.findall(findLink,item)[0] ##findall返回的是列表,索引只将值赋值 data.append(link) imgSrc = re.findall(findImgSrc, item)[0] data.append(imgSrc) titles=re.findall(findTitle,item) ##有的影片只有一个中文名,有的有中文和英文 if(len(titles)==2): onetitle = titles[0] data.append(onetitle) twotitle = titles[1].replace("/","")#去掉无关的符号 data.append(twotitle) else: data.append(titles) data.append(" ") ##将下一个值空出来 rating = re.findall(findRating, item)[0] # 添加评分 data.append(rating) judgeNum = re.findall(findJudge, item)[0] # 添加评价人数 data.append(judgeNum) inq = re.findall(findInq, item) # 添加概述 if len(inq) != 0: inq = inq[0].replace("。", "") data.append(inq) else: data.append(" ") bd = re.findall(findBd, item)[0] bd = re.sub('(\s+)?', " ", bd) bd = re.sub('/', " ", bd) data.append(bd.strip()) # 去掉前后的空格 datalist.append(data) return datalist ##保存数据 def savedata(datalist,savepath): workbook = xlwt.Workbook(encoding="utf-8",style_compression=0) ##style_compression=0不压缩 worksheet = workbook.add_sheet("豆瓣电影top250",cell_overwrite_ok=True) #cell_overwrite_ok=True再次写入数据覆盖 column = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息") ##execl项目栏 for i in range(0,8): worksheet.write(0,i,column[i]) #将column[i]的内容保存在第0行,第i列 for i in range(0,250): data = datalist[i] for j in range(0,8): worksheet.write(i+1,j,data[j]) workbook.save(savepath) ##爬取网页 def geturl(url): head = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36" } req = urllib.request.Request(url,headers=head) try: ##异常检测 response = urllib.request.urlopen(req) html = response.read().decode("utf-8") except urllib.error.URLError as e: if hasattr(e,"code"): ##如果错误中有这个属性的话 print(e.code) if hasattr(e,"reason"): print(e.reason) return html if __name__ == '__main__': main() print("爬取成功!!!")

五、详解代码

        导入所需模块,包括`BeautifulSoup`、`re`、`urllib`和`xlwt`。

from bs4 import BeautifulSoup
import  re  # 正则表达式,进行文字匹配
import urllib.request,urllib.error  # 指定URL,获取网页数据
import xlwt  # 进行excel操作

        主函数,主要包含三个步骤:获取数据、保存数据和打印成功信息。

def main():
    baseurl = "https://movie.douban.com/top250?start="
    datalist = getdata(baseurl)
    savepath = ".\\豆瓣电影top250.xls"
    savedata(datalist, savepath)

        这里使用正则表达式对html页面进行匹配,获取需要的信息,返回的是匹配到的模式对象。 


##compile返回的是匹配到的模式对象
findLink = re.compile(r'')  # 正则表达式模式的匹配,影片详情
findImgSrc = re.compile(r'(.*)')  # 影片片名
findRating = re.compile(r'(.*)')  # 找到评分
findJudge = re.compile(r'(\d*)人评价')  # 找到评价人数 #\d表示数字
findInq = re.compile(r'(.*)')  # 找到概况
findBd = re.compile(r'

https://blog.csdn.net/m0_73367097/article/details/(.*?)

', re.S) # 找到影片的相关内容,如导演,演员等

获取网页数据的函数,包括以下步骤:
1. 循环10次,依次爬取不同页面的信息;
2. 使用`urllib`获取html页面;
3. 使用`BeautifulSoup`解析页面;
4. 遍历每个div标签,即每一部电影;
5. 对每个电影信息进行匹配,使用正则表达式提取需要的信息并保存到一个列表中;
6. 将每个电影信息的列表保存到总列表中。

def getdata(baseurl):
    datalist = []
    for i in range(0, 10):
        url = baseurl + str(i * 25)  
        html = geturl(url)
        soup = BeautifulSoup(html, "html.parser")  
        for item in soup.find_all("div", class_='item'):  
            data = []  
            item = str(item) 
            link = re.findall(findLink, item)[0]  
            data.append(link)

            imgSrc = re.findall(findImgSrc, item)[0]
            data.append(imgSrc)

            titles = re.findall(findTitle, item) 
            if (len(titles) == 2):
                onetitle = titles[0]
                data.append(onetitle)
                twotitle = titles[1].replace("/", "") 
                data.append(twotitle)
            else:
                data.append(titles)
                data.append(" ") 

            rating = re.findall(findRating, item)[0] 
            data.append(rating)

            judgeNum = re.findall(findJudge, item)[0]  
            data.append(judgeNum)

            inq = re.findall(findInq, item) 
            if len(inq) != 0:
                inq = inq[0].replace("。", "")
                data.append(inq)
            else:
                data.append(" ")

            bd = re.findall(findBd, item)[0]
            bd = re.sub('(\s+)?', " ", bd)
            bd = re.sub('/', " ", bd)
            data.append(bd.strip()) 
            datalist.append(data)
    return datalist

将获取到的数据保存到excel文件中,包括以下步骤:
1. 创建一个excel文件;
2. 在文件中创建一个工作表;
3. 写入execl项目栏,即第一行的;
4. 循环保存每一部电影的信息。

def savedata(datalist, savepath):
    workbook = xlwt.Workbook(encoding="utf-8", style_compression=0)  ##style_compression=0不压缩
    worksheet = workbook.add_sheet("豆瓣电影top250", cell_overwrite_ok=True)  # cell_overwrite_ok=True再次写入数据覆盖
    column = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息")  ##execl项目栏
    for i in range(0, 8):
        worksheet.write(0, i, column[i])  # 将column[i]的内容保存在第0行,第i列
    for i in range(0, 250):
        data = datalist[i]
        for j in range(0, 8):
            worksheet.write(i + 1, j, data[j])
    workbook.save(savepath)

        使用`urllib`获取网页数据的函数。

def geturl(url):
    head = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
        "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36"
    }
    req = urllib.request.Request(url, headers=head)
    try:  ##异常检测
        response = urllib.request.urlopen(req)
        html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):  ##如果错误中有这个属性的话
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html

        程序入口,执行主函数,并打印成功信息。 

if __name__ == '__main__':
    main()
    print("爬取成功!!!")

六、效果展示

8dcde6b18ba14f429a8a1ad6e26fc47b.png

        559610420b9a403888c8154de5a73ab0.png

七、文末送书

        

参与活动

1️⃣参与方式:关注、点赞、收藏,评论(人生苦短,我一天我也懒得卷)
2️⃣获奖方式:程序随机抽取 3位,每位小伙伴将获得一本书
3️⃣活动时间:截止到 2024-1-10 22:00:00

注:活动结束后会在我的主页动态如期公布中奖者,包邮到家。

购买链接icon-default.png?t=N7T8https://product.dangdang.com/29643392.html

        这本书是美国人工智能领域的权威经典教材,受到广大师生的广泛好评。中文版更是被近百所高校采用,作为专业教科书使用

        本书第 2 版出版于 2018 年,恰恰在过去的5年中,人工智能技术有了突破性的进展,大模型即是其中的代表。第3版在第 2 版的基础上进行了内容调整和升级,以跟上技术发展的步伐。新增了深度学习、人工智能安全和人工智能编程等新进展、新成果。

        全书内容包括人工智能的历史、思维和智能之辩、图灵测试、搜索、博弈、知识表示、产生式系统、专家系统、机器学习、深度学习、自然语言处理(NLP)、自动规划、遗传算法、模糊控制、安全等。此外,它还介绍了一些新技术和应用,如机器人、高级计算机博弈等。

        这本书是美国人工智能领域的权威经典教材,受到广大师生的广泛好评。中文版更是被近百所高校采用,作为专业教科书使用

        本书第 2 版出版于 2018 年,恰恰在过去的5年中,人工智能技术有了突破性的进展,大模型即是其中的代表。第3版在第 2 版的基础上进行了内容调整和升级,以跟上技术发展的步伐。新增了深度学习、人工智能安全和人工智能编程等新进展、新成果。

        全书内容包括人工智能的历史、思维和智能之辩、图灵测试、搜索、博弈、知识表示、产生式系统、专家系统、机器学习、深度学习、自然语言处理(NLP)、自动规划、遗传算法、模糊控制、安全等。此外,它还介绍了一些新技术和应用,如机器人、高级计算机博弈等。

来源地址:https://blog.csdn.net/m0_73367097/article/details/134193251

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯