组件化和模块化
在技术架构演进的过程一定是先出现模块化后出现组件化,因为组件化就是解决了模块化的问题。
模块化架构
创建一个 Project 后可以创建多个 Module,这个 Module 就是所谓的模块。一个简单的例子,可能在写代码的时候我们会把首页、消息、我的模块拆开,每个 tab 所包含的内容就是一个模块,这样可以减少 module 的代码量,但是每个模块之间的肯定是有页面的跳转,数据传递等,比如 A 模块需要 B 模块的数据,于是我们会在 A 模块的 gradle 文件内通过 implementation project(':B')依赖 B 模块,但是 B 模块又需要跳转到 A 模块的某个页面,于是 B 模块又依赖了 A 模块。这样的开发模式依然没有解耦,改一个bug依然会改动很多模块,并不能解决大型项目的问题。
组件化架构
这里先提几个概念,我们日常业务需求开发的组件叫做业务组件,如果这个业务需求是可以被普遍复用的,那么叫做业务基础组件,譬如图片加载、网络请求等框架组件我们称为基础组件。搭建所有组件的app组件称为壳组件/工程。
这里先提几个概念,我们日常业务需求开发的组件叫做业务组件,如果这个业务需求是可以被普遍复用的,那么叫做业务基础组件,譬如图片加载、网络请求等框架组件我们称为基础组件。搭建所有组件的app组件称为壳组件/工程。接下来看一张架构图:
实线表示直接依赖关系,虚线表示间接依赖。比如壳工程肯定是要依赖业务基础组件、业务组件、module_common公共库的。业务组件依赖业务基础组件,但并不是直接依赖,而是通过”下沉接口“来实现间接调用。业务组件之间的依赖也是间接依赖。最后common组件依赖所有需要的基础组件,common也属于基础组件,它只是统一了基础组件的版本,同时也提供了给应用提供一些抽象基类,比如BaseActivity、BaseFragment,基础组件初始化等。
组件化带来的优势
**加快编译速度:**每个业务组件都可以单独运行调试,速度提升好几倍。举个例子:video组件单独编译运行时间为3s,因为此时AS只会运行video组件以及video组件依赖的组件的task,而如果集成编译时间为10s,app所引用的所有的组件的task都会执行。可见,效率提升了3倍。
**提高协作效率:**每个组件都有专人维护,不用关心其他组件是怎么实现的,只需要暴露对方需要的数据。测试也不需要整个回归,只需要重点测试修改的组件即可。
**功能重用:**一次编码处处复用,再也不需要复制代码了。尤其是基础组件和业务基础组件,基本上调用者根据文档就可以一键集成和使用。
前面有提到非大型项目一般不会进行组件化,但是就像上面提到的功能重用,这个优势并不是只能用到大型项目 。我们可以在写需求或库时完全可以拥有组件化思想,把它们单独写成一个基础组件或业务基础组件。当第二个项目来的时候正好也需要这个组件,那我们就省去了拆出这个组件的时间(因为写需求的时候很可能会造成大量耦合,后续拆分要花费时间),比如登录组件,分享组件等等都是可以在一开始就写成组件的。
组件化需解决的问题
业务组件如何实现单独调试?
业务组件间没有依赖,如何实现页面跳转?
业务组件间没有依赖,如何实现数据通信?
壳工程Application生命周期如何下发?
独立调试
单工程方案
所谓的单工程方案就是把所有组件都放到一个工程下,先看一下整体的目录:
ps:module_ 开头表示基础组件,fun_ 前缀表示业务基础组件,biz_前缀表示业务组件,export_前缀表示业务组件暴露接口。
单工程利弊分析:
- 利:一个模块修改后只需要编译一下,依赖它的其他模块就能马上感知到变化。
- 弊:没能做到完全的职责拆分,每个模块的开发者都有修改其他模块的权限。
首先在 gradle.properties 文件内声明一个变量:
// gradle.properties
isModule = true
isModule 为 true 时表示组件可以作为 apk 运行起来,false 表示组件只能作为 library。我们根据需要改变这个值后同步下gradle即可。
然后在某个 module 的 build.gradle 文件内用这个变量做三个地方的判断:
// build.gradle
// 区分是应用还是库
if(isModule.toBoolean()) {
apply plugin: 'com.android.application'
}else {
apply plugin: 'com.android.library'
}
android {
defaultConfig {
// 如果是应用需要指定application
if(isModule.toBoolean()) {
applicationId "com.xxx.xxx"
}
}
sourceSets {
main {
// 应用和库的AndroidManifest文件区分
if(isModule.toBoolean()) {
manifest.srcFile 'src/main/debug/AndroidManifest.xml'
}else {
manifest.srcFile 'src/main/AndroidManifest.xml'
}
}
}
}
由于library是不需要 Application 和启动Activity页,所以我们要区分这个文件,应用manifest指定的路径没有特定,随意找个路径创建即可。在应用AndroidManifest.xml里我们要设置启动页:
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.sun.biz_home">
<application
android:allowBackup="true"
android:label="@string/home_app_name"
android:supportsRtl="true"
android:theme="@style/home_AppTheme">
<activity android:name=".debug.HomeActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
intent-filter>
activity>
application>
manifest>
library 的 AndroidManifest.xml 不需要这些: library 的 AndroidManifest.xml 不需要这些:
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.sun.biz_home">
manifest>
gradle 依赖 module 的方式主要有两种:
- implementation: A implementation B,B implementation C, 但 A 不能访问到 C 的东西。
- api:A api B,B api C,A能访问到C的东西。
一般来说我们只需要使用 implementation 即可,api 是会造成项目编译时间变长,而且会引入该模块不需要的功能,代码之间耦合变得严重了。不过 module_common 是统一了基础组件版本的公共库,所有组件都应需要依赖它并拥有基础组件的能力,所以基本每个业务组件和业务基础组件都应该依赖公共库:
dependencies {
implementation project(':module_common')
}
而 common 组件依赖基础组件应该是用 api,因为把基础组件的能力传递给上层业务组件:
dependencies {
api project(':module_base')
api project(':module_util')
}
多工程方案
多工程就是每个组件都是一个工程,例如创建一个工程后 app 作为壳组件,它依赖 biz_home 运行,因此不需要 isModule 来控制独立调试,它本身就是一个工程可以独立调试。
多工程的利弊就是和单工程相反的:
- 利:做到职责完全拆分,其他项目复用更加方便,直接一行依赖引入。
- 弊:修改后需要上传到maven仓库,其他工程再次编译后才能感知到变化,多了上传和编译的时间。
多工程组件依赖需要用到maven仓库。把每个组件的aar上传到公司内网的maven仓库,然后像这样去依赖:
implementation 'com.xxx.xxx:module_common:1.0.0'
我们把三方库统一放到 config.gradle 内管理:
ext {
dependencies = [
"glide": "com.github.bumptech.glide:glide:4.12.0",
"glide-compiler": "com.github.bumptech.glide:compiler:4.12.0",
"okhttp3": "com.squareup.okhttp3:okhttp:4.9.0",
"retrofit": "com.squareup.retrofit2:retrofit:2.9.0",
"retrofit-converter-gson" : "com.squareup.retrofit2:converter-gson:2.9.0",
"retrofit-adapter-rxjava2" : "com.squareup.retrofit2:adapter-rxjava2:2.9.0",
"rxjava2": "io.reactivex.rxjava2:rxjava:2.2.21",
"arouter": "com.alibaba:arouter-api:1.5.1",
"arouter-compiler": "com.alibaba:arouter-compiler:1.5.1",
// our lib
"module_util": "com.sun.module:module_util:1.0.0",
"module_common": "com.sun.module:module_common:1.0.0",
"module_base": "com.sun.module:module_base:1.0.0",
"fun_splash": "com.sun.fun:fun_splash:1.0.0",
"fun_share": "com.sun.fun:fun_share:1.0.0",
"export_biz_home": "com.sun.export:export_biz_home:1.0.0",
"export_biz_me": "com.sun.export:export_biz_me:1.0.0",
"export_biz_msg": "com.sun.export:export_biz_msg:1.0.0",
"biz_home": "com.sun.biz:biz_home:1.0.0",
"biz_me": "com.sun.biz:biz_me:1.0.0",
"biz_msg": "com.sun.biz:biz_msg:1.0.0"
]
}
这样方便版本统一管理, 然后在根目录的 build.gradle 内导入:
apply from: 'config.gradle'
最后在各自的模块引入依赖,比如在 module_common 中这么引入依赖即可
dependencies {
api rootProject.ext.dependencies["arouter"]
kapt rootProject.ext.dependencies["arouter-compiler"]
api rootProject.ext.dependencies["glide"]
api rootProject.ext.dependencies["okhttp3"]
api rootProject.ext.dependencies["retrofit"]
api rootProject.ext.dependencies["retrofit-converter-gson"]
api rootProject.ext.dependencies["retrofit-adapter-rxjava2"]
api rootProject.ext.dependencies["rxjava2"]
api rootProject.ext.dependencies["module_util"]
api rootProject.ext.dependencies["module_base"]
}
个人觉得多工程适合"很大"的工程,每个业务组件可能都需要一个组开发,类似淘宝这样的app。但这只是针对业务组件来说的,业务基础组件和基础组件修改的频率不会很大,最好都是单工程上传至maven仓库来使用。本文的例子是为了方便所以把所有组件写到一起了,最好的方式就是把 fun_ 和 module_ 开头的组件都拆分成单工程独立开发,业务组件写到一个工程内。
页面跳转
做完组件之间的隔离后,暴露出来最明显的问题就是页面跳转和数据通信的问题。一般来说,页面跳转都是显示startActivity跳转,在组件化项目内就不适用了,隐式跳转可以用,但每个Activity都要写 intent-filter 就显得有点麻烦,所以最好的方式还是用路由框架。
实际上市面已经有比较成熟的路由框架专门就是为了组件化而生的,比如美团的WMRouter,阿里的ARouter等,本例使用 ARouter 框架,看下ARouter页面跳转的基本操作。
首先肯定是引入依赖,以 module_common 引入ARouter举例,build.gradle 应该添加:
android {
defaultConfig {
javaCompileOptions {
annotationProcessorOptions {
arguments = [AROUTER_MODULE_NAME: project.getName()]
}
}
}
compileOptions {
sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8
}
}
dependencies {
api rootProject.ext.dependencies["arouter"]
kapt rootProject.ext.dependencies["arouter-compiler"]
}
kapt注解依赖没有办法传递,所以我们不可避免得需要在每个模块都声明这些配置,除了 api rootProject.ext.dependencies["arouter"] 这行。然后需要全局注册 ARouter,我是在 module_common 统一注册的。
class AppCommon: BaseApp{
override fun onCreate(application: Application) {
MLog.d(TAG, "BaseApp AppCommon init")
initARouter(application)
}
private fun initARouter(application: Application) {
if(BuildConfig.DEBUG) {
ARouter.openLog()
ARouter.openDebug()
}
ARouter.init(application)
}
}
接着我们在 module_common 模块内声明一个路由表用作统一管理路径。
// RouterPath.kt
class RouterPath {
companion object {
const val APP_MAIN = "/app/MainActivity"
const val HOME_FRAGMENT = "/home/HomeFragment"
const val MSG_FRAGMENT = "/msg/MsgFragment"
const val ME_FRAGMENT = "/me/MeFragment"
const val MSG_PROVIDER = "/msg/MsgProviderImpl"
}
}
然后在MainActivity类文件上进行注解:
@Route(path = RouterPath.APP_MAIN)
class MainActivity : AppCompatActivity() {
}
任意模块只需要调用 ARouter.getInstance().build(RouterPath.APP_MAIN).navigation() 即可实现跳转。如果我们要加上数据传递也很方便:
ARouter.getInstance().build(RouterPath.APP_MAIN)
.withString("key", "value")
.withObject("key1", obj)
.navigation()
然后在MainActivity使用依赖注入接受数据:
class MainActivity : AppCompatActivity() {
@Autowired
String key = ""
}
Arouter方案
在 export_biz_msg 组件下声明 IMsgProvider,此接口必须实现 IProvider 接口:
interface IMsgProvider: IProvider {
fun onCountFromHome(count: Int = 1)
}
然后在 biz_msg 组件里实现这个接口:
@Route(path = RouterPath.MSG_PROVIDER)
class MsgProviderImpl: IMsgProvider {
override fun onCountFromHome(count: Int) {
// 这里只是对数据进行分发,有监听计数的对象会收到
MsgCount.instance.addCount(count)
}
override fun init(context: Context?) {
// 对象被初始化时调用
}
}
在 biz_home 首页组件中发送计数:
val provider = ARouter.getInstance().build(RouterPath.MSG_PROVIDER).navigation() as IMsgProvider
provider.onCountFromHome(count)
可以看到其实和页面跳转的方式基本雷同,包括获取 Fragment 实例的方式也是这种。ARouter把所有通信的方式都用一种api实现,让使用者上手非常容易。
Application生命周期分发
当 app 壳工程启动Application初始化时要通知到其他组件初始化一些功能。这里提供一个简单的方式。
首先我们在 module_common 公共库内声明一个接口 BaseApp:
interface BaseApp {
fun onCreate(application: Application)
}
然后每个组件都要创建一个 App 类实现此接口,比如biz_home组件:
class HomeApp: BaseApp {
override fun onCreate(application: Application) {
// 初始化都放在这里
MLog.d(TAG, "BaseApp HomeApp init")
}
}
剩下最后一步就是从 app 壳工程分发 application 的生命周期了,这里用到反射技术:
val moduleInitArr = arrayOf(
"com.sun.module_common.AppCommon",
"com.sun.biz_home.HomeApp",
"com.sun.biz_msg.MsgApp",
"com.sun.biz_me.MeApp"
)
class App: Application() {
override fun onCreate() {
super.onCreate()
initModuleApp(this)
}
private fun initModuleApp(application: Application) {
try {
for(appName in moduleInitArr) {
val clazz = Class.forName(appName)
val module = clazz.getConstructor().newInstance() as BaseApp
module.onCreate(application)
}
}catch (e: Exception) {
e.printStackTrace()
}
}
}
我们只需要知道的每个实现 BaseApp 接口的类的全限定名并写到moduleInitArr数组里,然后通过反射获取 Class 对象从而获取构造函数创建实体对象,最后调用 BaseApp 的 onCreate 方法将 application 传入,每个Application生命周期的方法都可以通过这种方式传递。