这篇文章给大家分享的是有关如何优化Springboot线程池并发处理数据方式的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
第一步:首先配置线程基本参数
可以放在application.propertes文件种也可以放在自己新建的config/文件目录下,注意:但是需要使用@PropertySource把配置文件进行加载。
# 异步线程配置# 配置核心线程数async.executor.thread.core_pool_size = 8# 配置最大线程数async.executor.thread.max_pool_size = 20# 配置队列大小async.executor.thread.queue_capacity = 99999# 配置线程池中的线程的名称前缀async.executor.thread.name.prefix = async-service-
第二步:让Spring Boot加载
用来定义如何创建一个ThreadPoolTaskExecutor,要使用@Configuration和@EnableAsync这两个注解,表示这是个配置类,并且是线程池的配置类
@Slf4j@EnableAsync@Configurationpublic class RCExecutorConfig { @Value("${async.executor.thread.core_pool_size}") private int corePoolSize; @Value("${async.executor.thread.max_pool_size}") private int maxPoolSize; @Value("${async.executor.thread.queue_capacity}") private int queueCapacity; @Value("${async.executor.thread.name.prefix}") private String namePrefix; @Bean(name = "asyncServiceExecutor") public Executor asyncServiceExecutor() { log.info("start asyncServiceExecutor"); ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); //ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor(); //配置核心线程数 executor.setCorePoolSize(corePoolSize); //配置最大线程数 executor.setMaxPoolSize(maxPoolSize); //配置队列大小 executor.setQueueCapacity(queueCapacity); //配置线程池中的线程的名称前缀 executor.setThreadNamePrefix(namePrefix); // rejection-policy:当pool已经达到max size的时候,如何处理新任务 // CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行 executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); //执行初始化 executor.initialize(); return executor; }}
第三步:创建一个service接口
是异步线程的接口,便于测试
public interface AsyncService { void executeAsync();}
第四步:编写现实类
将Service层的服务异步化,在executeAsync()方法上增加注解@Async("asyncServiceExecutor"),asyncServiceExecutor方法是前面RCExecutorConfig.java中的方法名,表明executeAsync方法进入的线程池是asyncServiceExecutor方法创建的。
测试方面这里我加入了一个定时任务,使用的是corn表达式。(不懂得同学可以网上了解一下)
@Slf4j@Servicepublic class AsyncServiceImpl implements AsyncService { @Override @Scheduled(cron = " */1 * * * * ? ") @Async("asyncServiceExecutor") public void executeAsync() { log.info("start executeAsync"); System.out.println("异步线程执行批量插入等耗时任务"); log.info("end executeAsync"); } }
第五步:测试结果如下
15.004 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:15.004 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:16.003 [async-service-2] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:16.004 [async-service-2] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:17.001 [async-service-3] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:17.001 [async-service-3] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:18.002 [async-service-4] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:18.003 [async-service-4] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:19.002 [async-service-5] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:19.003 [async-service-5] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:20.001 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:20.002 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:21.002 [async-service-7] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:21.002 [async-service-7] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:22.004 [async-service-8] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:22.005 [async-service-8] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:23.001 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:23.003 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:24.003 [async-service-2] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:24.003 [async-service-2] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:25.001 [async-service-3] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:25.001 [async-service-3] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:26.002 [async-service-4] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:26.002 [async-service-4] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:27.002 [async-service-5] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:27.003 [async-service-5] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:28.001 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:28.001 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:29.001 [async-service-7] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:29.002 [async-service-7] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:30.001 [async-service-8] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:30.001 [async-service-8] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:32:31.001 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:32:31.001 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
还没完:
通过以上日志可以发现,[async-service-]是有多个线程的,显然已经在我们配置的线程池中执行了,表明每次请求都快速响应了,而耗时的操作都留给线程池中的线程去异步执行;
还有另一个问提就是,虽然已经用上了线程池,但是依然不清楚线程池当时的情况,有多少线程在执行,多少在队列中等待呢?于是这里我创建了一个ThreadPoolTaskExecutor的子类,可以把每次提交线程的时候都会将当前线程池的运行状况打印出来
import lombok.extern.slf4j.Slf4j; @Slf4jpublic class VisiableThreadPoolTaskExecutor extends ThreadPoolTaskExecutor { private static final long serialVersionUID = -3518460523928455463L; private void showThreadPoolInfo(String prefix) { ThreadPoolExecutor threadPoolExecutor = getThreadPoolExecutor(); if (null == threadPoolExecutor) { return; } log.info("{}, {},taskCount [{}], completedTaskCount [{}], activeCount [{}], queueSize [{}]", this.getThreadNamePrefix(), prefix, threadPoolExecutor.getTaskCount(), threadPoolExecutor.getCompletedTaskCount(), threadPoolExecutor.getActiveCount(), threadPoolExecutor.getQueue().size()); } @Override public void execute(Runnable task) { showThreadPoolInfo("1. do execute"); super.execute(task); } @Override public void execute(Runnable task, long startTimeout) { showThreadPoolInfo("2. do execute"); super.execute(task, startTimeout); } @Override public Future<?> submit(Runnable task) { showThreadPoolInfo("1. do submit"); return super.submit(task); } @Override public <T> Future<T> submit(Callable<T> task) { showThreadPoolInfo("2. do submit"); return super.submit(task); } @Override public ListenableFuture<?> submitListenable(Runnable task) { showThreadPoolInfo("1. do submitListenable"); return super.submitListenable(task); } @Override public <T> ListenableFuture<T> submitListenable(Callable<T> task) { showThreadPoolInfo("2. do submitListenable"); return super.submitListenable(task); } }
其次:修改RCExecutorConfig.java的asyncServiceExecutor方法,
将ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor()改为ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor()
@Bean(name = "asyncServiceExecutor") public Executor asyncServiceExecutor() { log.info("start asyncServiceExecutor"); //ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor(); ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor(); //配置核心线程数 executor.setCorePoolSize(corePoolSize); //配置最大线程数 executor.setMaxPoolSize(maxPoolSize); //配置队列大小 executor.setQueueCapacity(queueCapacity); //配置线程池中的线程的名称前缀 executor.setThreadNamePrefix(namePrefix); // rejection-policy:当pool已经达到max size的时候,如何处理新任务 // CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行 executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); //执行初始化 executor.initialize(); return executor; }
测试结果如下:
异步线程执行批量插入等耗时任务
10:41:35.003 [async-service-5] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:36.001 [sheduled-pool-1-thread-1] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [5], completedTaskCount [5], activeCount [0], queueSize [0]
10:41:36.001 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:36.002 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:37.001 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [6], completedTaskCount [6], activeCount [0], queueSize [0]
10:41:37.001 [async-service-7] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:37.002 [async-service-7] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:38.002 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [7], completedTaskCount [7], activeCount [0], queueSize [0]
10:41:38.002 [async-service-8] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:38.002 [async-service-8] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:39.001 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [8], completedTaskCount [8], activeCount [0], queueSize [0]
10:41:39.001 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:39.002 [async-service-1] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:40.003 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [9], completedTaskCount [9], activeCount [0], queueSize [0]
10:41:40.003 [async-service-2] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:40.003 [async-service-2] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:41.001 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [10], completedTaskCount [10], activeCount [0], queueSize [0]
10:41:41.001 [async-service-3] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:41.001 [async-service-3] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:42.000 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [11], completedTaskCount [11], activeCount [0], queueSize [0]
10:41:42.000 [async-service-4] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:42.000 [async-service-4] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:43.001 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [12], completedTaskCount [12], activeCount [0], queueSize [0]
10:41:43.002 [async-service-5] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:43.003 [async-service-5] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:44.001 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [13], completedTaskCount [13], activeCount [0], queueSize [0]
10:41:44.001 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
异步线程执行批量插入等耗时任务
10:41:44.001 [async-service-6] INFO c.a.a.service.impl.AsyncServiceImpl - end executeAsync
10:41:45.000 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [14], completedTaskCount [14], activeCount [0], queueSize [0]
10:41:45.001 [async-service-7] INFO c.a.a.service.impl.AsyncServiceImpl - start executeAsync
解释:这里意思提交了14个任务,处理了14个任务,对列中还剩0个任务
45.000 [sheduled-pool-1-thread-7] INFO c.a.a.e.t.VisiableThreadPoolTaskExecutor - async-service-, 2. do submit,taskCount [14], completedTaskCount [14], activeCount [0], queueSize [0]
感谢各位的阅读!关于“如何优化Springboot线程池并发处理数据方式”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!