文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【MMDetection】——训练个人数据集

2023-09-09 18:11

关注

文章目录

mmdet支持COCO格式和VOC格式,能用COCO格式,还是建议COCO的。网上有YOLO转COCO,VOC转COCO,可以自己转换。

在mmdetection代码的根目录下,创建 data/coco 文件夹,按照coco的格式排放好数据集。annotations下面是标签文件,train2017val2017test2017是图片。
在这里插入图片描述
在这里插入图片描述

第一处: mmdet/core/evalution/class_names.py 代码下的 def coco_classes() 的 return 内容改为自己数据集的类别;

第二处:mmdet/datasets/coco.py 代码下的 class CocoDataset(CustomDataset) 的 CLASSES 改为自己数据集的类别;

注意:修改两处后,一定要在根目录下,输入命令:
python setup.py install build
重新编译代码,要不然类别会没有载入,还是原coco类别,训练异常。

python tools/train.py configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py --work-dir work_dirs

其中,work_dirs是自己在根目录新建的工作目录,训练文件存储在这里。

注意,此时运行命令之后,并不是直接训练就可以不管了!我们还有参数设置没改!这里输入训练命令,只是需要它生成一个配置文件,便于我们改参数!在这里插入图片描述

打开配置文件 cascade_rcnn_r50_fpn_1x_coco.py :
(1)修改 num_classes ,将其改为自己数据类别(直接全局搜索,有3处,都要改);

(2)修改 data_root 路径和训练集、验证集、测试集的图片和标签路径,如下图:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

(3)修改训练图片大小和学习率

修改下处代码,可以更改图片大小

img_scale = (1333, 800), 

batch_size, mmdet默认的方式是由 GPU 数量与 samples_per_gpu 参数决定:
samples_per_gpu: 每个gpu读取的图像数量(意思不就是batch_size=2),该参数和训练时的gpu数量决定了训练时的batch_size。(为什么这么说呢?因为mmdet是8个GPU训练的,那么总的batch就是 8 *samples_per_gpu=16,即训练时是batch_size为16) 。
但我们通常是只有一个gpu, 该参数设置为 2, 意思就是我们训练的 batch_size为2;

workers_per_gpu: 读取数据时每个gpu分配的线程数 ,一般设置为 2即可;(我感觉既然用单个GPU,设置到8也无妨吧?我还没试)

在这里插入图片描述

学习率设置:
mmdet 默认的学习率是基于8个gpu,而且默认是1个GPU处理2个图像(就上面说的samples_per_gpu为2),可以这样理解:
8个GPU,每个GPU处理2张图片,那么真实训练总的一个batch就包括16张图片,学习率为0.02;
4个GPU,每个GPU处理2张图片,那么真实训练总的一个batch就包括8张图片,学习率为0.01;
1个GPU,每个GPU处理2张图片,那么真实训练总的一个batch就包括2张图片,学习率为0.0025;
1个GPU,每个GPU处理1张图片,那么真实训练总的一个batch就包括1张图片,学习率为0.00125;
在这里插入图片描述
(4)使用预训练模型
提前从github上下载预训练模型,新建一个checkpoints文件夹下,放到里面。(模型下载链接:https://github.com/open-mmlab/mmdetection/blob/master/docs/en/model_zoo.md
然后修改以下代码:

# 原本是 load_from = None ,修改为load_from = 'checkpoints/fcascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth’

(5)训练轮数,保存模型间隔,日志保存参数
在这里插入图片描述

!!!看清楚路径!使用的是更改过的配置文件训练!!!

python tools/train.py work_dirs/cascade_rcnn_r50_fpn_1x_coco.py

在第三步生成配置文件时,遇到以下报错:

AssertionError: The num_classes (10) in Shared2FCBBoxHead of
MMDataParallel does not matches the length of CLASSES 80) in
CocoDataset

即使在修改 coco.py 和 class_names.py 后运行 python setup.py install仍然无法解决;

解决方法:
根据报错信息,找到自己虚拟环境的/mmdet/datasets/coco.pymmdet/core/evaluation/class_names.py,再次修改
CocoDataset()coco_classes()l两处(跟第二步一样,其实打开,就能看到虚拟环境下的并没有修改成功)

参考链接:AssertionError: The num_classes (3) in Shared2FCBBoxHead of
MMDataParallel does not
matches

(1)生成中间件

python tools/test.py work_dirs/cascade_rcnn_r50_fpn_1x_coco.py work_dirs/epoch_20.pth  --out results.pkl

(2)使用COCO标准评估指标

python tools/analysis_tools/eval_metric.py  work_dirs/cascade_rcnn_r50_fpn_1x_coco.py results.pkl  --eval=bbox

(3)使用VOC标准评估指标

# results.pkl 的顺序别放错,在中间。python tools/voc_eval.py results.pkl work_dirs/cascade_rcnn_r50_fpn_1x_coco.py  

(1)使用 test.py 生成 results.bbox.json 文件(在根目录下,路径可自己指定)

python tools/test.py  work_dirs/cascade_rcnn_r50_fpn_1x_coco.py work_dirs/epoch_20.pth  --format-only  --options "jsonfile_prefix=./results"

(2)获得COCO bbox错误结果每个类别,保存分析结果图像到目录results/

python tools/analysis_tools/coco_error_analysis.py results.bbox.json results  --ann=data/coco/annotations/instances_val2017.json
python tools/analysis_tools/get_flops.py work_dirs/cascade_rcnn_r50_fpn_1x_coco.py --shape 640 640
python tools/analysis_tools/confusion_matrix.py work_dirs/cascade_rcnn_r50_fpn_1x_coco.py results.pkl coco_confusion_matrix/

plot_pr_curve.py 代码来自:https://blog.csdn.net/weixin_44966641/article/details/124558532

import osimport sysimport mmcvimport numpy as npimport argparseimport matplotlib.pyplot as pltfrom pycocotools.coco import COCOfrom pycocotools.cocoeval import COCOevalfrom mmcv import Configfrom mmdet.datasets import build_datasetdef plot_pr_curve(config_file, result_file, out_pic, metric="bbox"):    """plot precison-recall curve based on testing results of pkl file.        Args:            config_file (list[list | tuple]): config file path.            result_file (str): pkl file of testing results path.            metric (str): Metrics to be evaluated. Options are                'bbox', 'segm'.    """        cfg = Config.fromfile(config_file)    # turn on test mode of dataset    if isinstance(cfg.data.test, dict):        cfg.data.test.test_mode = True    elif isinstance(cfg.data.test, list):        for ds_cfg in cfg.data.test:            ds_cfg.test_mode = True    # build dataset    dataset = build_dataset(cfg.data.test)    # load result file in pkl format    pkl_results = mmcv.load(result_file)    # convert pkl file (list[list | tuple | ndarray]) to json    json_results, _ = dataset.format_results(pkl_results)    # initialize COCO instance    coco = COCO(annotation_file=cfg.data.test.ann_file)    coco_gt = coco    coco_dt = coco_gt.loadRes(json_results[metric])     # initialize COCOeval instance    coco_eval = COCOeval(coco_gt, coco_dt, metric)    coco_eval.evaluate()    coco_eval.accumulate()    coco_eval.summarize()    # extract eval data    precisions = coco_eval.eval["precision"]    '''    precisions[T, R, K, A, M]    T: iou thresholds [0.5 : 0.05 : 0.95], idx from 0 to 9    R: recall thresholds [0 : 0.01 : 1], idx from 0 to 100    K: category, idx from 0 to ...    A: area range, (all, small, medium, large), idx from 0 to 3    M: max dets, (1, 10, 100), idx from 0 to 2    '''    pr_array1 = precisions[0, :, 0, 0, 2]     pr_array2 = precisions[1, :, 0, 0, 2]     pr_array3 = precisions[2, :, 0, 0, 2]     pr_array4 = precisions[3, :, 0, 0, 2]     pr_array5 = precisions[4, :, 0, 0, 2]     pr_array6 = precisions[5, :, 0, 0, 2]     pr_array7 = precisions[6, :, 0, 0, 2]     pr_array8 = precisions[7, :, 0, 0, 2]     pr_array9 = precisions[8, :, 0, 0, 2]     pr_array10 = precisions[9, :, 0, 0, 2]     x = np.arange(0.0, 1.01, 0.01)    # plot PR curve    plt.plot(x, pr_array1, label="iou=0.5")    plt.plot(x, pr_array2, label="iou=0.55")    plt.plot(x, pr_array3, label="iou=0.6")    plt.plot(x, pr_array4, label="iou=0.65")    plt.plot(x, pr_array5, label="iou=0.7")    plt.plot(x, pr_array6, label="iou=0.75")    plt.plot(x, pr_array7, label="iou=0.8")    plt.plot(x, pr_array8, label="iou=0.85")    plt.plot(x, pr_array9, label="iou=0.9")    plt.plot(x, pr_array10, label="iou=0.95")    plt.xlabel("recall")    plt.ylabel("precison")    plt.xlim(0, 1.0)    plt.ylim(0, 1.01)    plt.grid(True)    plt.legend(loc="lower left")    plt.savefig(out_pic)if __name__ == "__main__":    parser = argparse.ArgumentParser()    parser.add_argument('config', help='config file path')    parser.add_argument('pkl_result_file', help='pkl result file path')    parser.add_argument('--out', default='pr_curve.png')    parser.add_argument('--eval', default='bbox')    cfg = parser.parse_args()    plot_pr_curve(config_file=cfg.config, result_file=cfg.pkl_result_file, out_pic=cfg.out, metric=cfg.eval)

输入命令:

python plot_pr_curve.py work_dirs/cascade_rcnn_r50_fpn_1x_coco.py results.pkl
python tools/misc/print_config.py work_dirs/cascade_rcnn_r50_fpn_1x_coco.py
python tools/misc/browse_dataset.py work_dirs/cascade_rcnn_r50_fpn_1x_coco.py  --output-dir work_dirs/

https://blog.csdn.net/qq_35077107/article/details/124768460?spm=1001.2014.3001.5502

https://blog.csdn.net/weixin_44966641/article/details/124558532

来源地址:https://blog.csdn.net/retainenergy/article/details/129907347

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯