文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

数据分析实战,用Python热力图分析房地产市场

2024-11-30 14:37

关注

然而,寻找这些房产并评估它们的潜力可能是一项具有挑战性的任务,尤其是在房地产市场复杂的大城市。

地理热力图可以成为发现不良房地产折扣的有力工具。热力图使用颜色编码来表示地图上的价值,使之可以轻松识别趋势和模式。在本文中,将展示如何在Python中使用房地产数据创建地理热力图,为客户识别不良房地产的折扣。

创建地理热力图

为了创建地理热力图,我们使用Python中的folium库。Folium是一个Python库,它可以轻松创建带有颜色编码标记和叠加层的交互式地图。

在这个任务中需要的数据是:

  1. 房产的纬度和经度
  2. 房产的折扣,可以通过使用最低销售价格除以估计的市场价值来计算

数据准备

1.导入数据,并检查需要的列

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np 

data_mw = pd.DataFrame(pd.read_csv('Vendue_Tech/data/data_collection_mw_ml.csv',  low_memory=False))

df_loc = data_mw[['location','discount_calculated']]

df_loc

######################################################################

Out[16]: 
                   location  discount_calculated
41     45.816608, 15.941879             0.000000
71     44.558022, 14.886877             0.800000
182    45.828371, 16.067598             0.800000
200    45.650070, 16.537105             0.800000
201    45.650070, 16.537105             0.800000
                     ...                  ...
23570   41.417765, 2.207708             1.067182
23917  38.373215, -0.488444             0.250780
24087  39.948468, -0.095799             0.470790
24431  41.656043, -0.889369             0.636979
24537  38.090955, -0.727618             0.732907

2.分离纬度和经度

在导入的原始数据库中,我们得到了一个包含纬度和经度的列,因此需要先将这两种数据分开:

df_loc[['latitude', 'longitude']] = df_loc['location'].str.split(',', expand=True)

# 将纬度和经度列转换为浮点数类型
df_loc[['latitude', 'longitude']] = df_loc[['latitude', 'longitude']].astype(float)

df_loc

######################################################################

Out[22]: 
                   location  discount_calculated   latitude  longitude
41     45.816608, 15.941879             0.000000  45.816608  15.941879
71     44.558022, 14.886877             0.800000  44.558022  14.886877
182    45.828371, 16.067598             0.800000  45.828371  16.067598
200    45.650070, 16.537105             0.800000  45.650070  16.537105
201    45.650070, 16.537105             0.800000  45.650070  16.537105
                     ...                  ...        ...        ...
23570   41.417765, 2.207708             1.067182  41.417765   2.207708
23917  38.373215, -0.488444             0.250780  38.373215  -0.488444
24087  39.948468, -0.095799             0.470790  39.948468  -0.095799
24431  41.656043, -0.889369             0.636979  41.656043  -0.889369
24537  38.090955, -0.727618             0.732907  38.090955  -0.727618

3.绘制地理热力图

可以使用以下pip命令来安装Python folium模块:

pip install folium
lats_longs_weight = list(map(list, zip(df_loc["latitude"],df_loc["longitude"],
                          df_loc["discount_calculated"]
                         )))

lats_longs_weight[:5]

#####################################################################

Out[24]: 
[[45.816608, 15.941879, 0.0],
 [44.558022, 14.886877, 0.7999999598695077],
 [45.828371, 16.067598, 0.7999999580250712],
 [45.65007, 16.537105, 0.8000000798932306],
 [45.65007, 16.537105, 0.8000000798932306]]
# 导入库
import folium
from folium.plugins import HeatMap

# 我们通过传递一个整数值给`zoom_start`属性来设置缩放级别
# 我们选择`location = [40.151384,-4.108039]`,这样就可以围绕我们最常去的地方进行放大。
map_obj = folium.Map(location = [40.151384,-4.108039], zoom_start = 4)

# 创建我们的地理热力图
HeatMap(lats_longs_weight).add_to(map_obj)

# 保存热力图
map_obj.save('map.html')

结果和结论

从上述图片可以看到,在克罗地亚,投资者在首都Zagreb附近有最大的机会,而在西班牙,最大的折扣可以在Barcelona和Alicante附近找到。在未来的工作中,探索这些按房地产类型划分的数据将是有趣的,这样投资者就可以看到在哪些地方的公寓折扣最大,以及如果投资者想投资耕地应该在哪里寻找。

地理热力图工具使我们能够直观地看到欧盟各地不良房地产的折扣情况。通过分析房地产数据并将其在地图上可视化,投资者能够确定折扣最高的地区,并优先在这些地区寻找不良房地产。这项技术帮助投资者发现了可能会错过的潜在投资机会。

来源:Python学研大本营内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯