文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python+opencv图像分割如何实现分割不规则ROI区域

2023-06-14 22:38

关注

这篇文章将为大家详细讲解有关python+opencv图像分割如何实现分割不规则ROI区域,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

python有哪些常用库

python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。

一、已知边界坐标,直接画出多边形

例:最基础的画个四边形

# 定义四个顶点坐标pts = np.array([[10, 5],  [50, 10], [70, 20], [20, 30]], np.int32)# 顶点个数:4,矩阵变成4*1*2维# OpenCV中需要将多边形的顶点坐标变成顶点数×1×2维的矩阵# 这里 reshape 的第一个参数为-1, 表示“任意”,意思是这一维的值是根据后面的维度的计算出来的pts = pts.reshape((-1, 1, 2))cv2.polylines(img, [pts], True, (0, 255, 255))

上例中,img是你的画布原图。pts你可以随便改,改成自己的边界点。注意cv2.polylines中参数pts要加[ ]。

二、通过形态学操作产生Mask

腐蚀、膨胀之后,产生二值化(非黑即白)的mask,然后和图像做与运算。

腐蚀膨胀的操作方法简单复习一下:

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))  # 矩形结构:MORPH_RECTkernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15))  # 椭圆结构:MORPH_ELLIPSEimg = cv2.erode(img, kernel)  # 腐蚀 img = cv2.dilate(img, kernel)  # 膨胀

我们都知道,腐蚀膨胀完后会得到一个二值化的掩模(mask)。

mask = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) #img是腐蚀膨胀完的图片    ROI = cv2.bitwise_and(mask, oriimg) #oriimg是原始图片    cv2.imshow('ROI',ROI)    if cv2.waitKey(500) and 0xff == ord('q'):        cv2.destroyAllWindows()

 讲原始图片和mask做一个掩模就可以得到最终图像了(例子此处就不举了因为一些图片涉及科研内容,paper还未发表,请自行试一下吧)。

三、人机交互式

用鼠标点击,产生多边形。

这样是比较精确的,比较是人工操作,但是比较麻烦,如果有上万张图片,你不可能每张都自己鼠标去分割出来一下。但是这个方法可以用于获取ROI的ground-truth,然后用来和机器分割的结果做对比,计算准确率、召回率等评价指标!所以学一下还是有用的。

#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Wed May 29 19:18:28 2019@author: youxinlin""" import cv2import numpy as np # -----------------------鼠标操作相关------------------------------------------lsPointsChoose = []tpPointsChoose = []pointsCount = 0count = 0pointsMax = 6def on_mouse(event, x, y, flags, param):    global img, point1, point2, count, pointsMax    global lsPointsChoose, tpPointsChoose  # 存入选择的点    global pointsCount  # 对鼠标按下的点计数    global img2, ROI_bymouse_flag    img2 = img.copy()  # 此行代码保证每次都重新再原图画  避免画多了    # -----------------------------------------------------------    #    count=count+1    #    print("callback_count",count)    # --------------------------------------------------------------     if event == cv2.EVENT_LBUTTONDOWN:  # 左键点击        pointsCount = pointsCount + 1        # 感觉这里没有用?2018年8月25日20:06:42        # 为了保存绘制的区域,画的点稍晚清零        # if (pointsCount == pointsMax + 1):        #     pointsCount = 0        #     tpPointsChoose = []        print('pointsCount:', pointsCount)        point1 = (x, y)        print (x, y)        # 画出点击的点        cv2.circle(img2, point1, 10, (0, 255, 0), 2)         # 将选取的点保存到list列表里        lsPointsChoose.append([x, y])  # 用于转化为darry 提取多边形ROI        tpPointsChoose.append((x, y))  # 用于画点        # ----------------------------------------------------------------------        # 将鼠标选的点用直线连起来        print(len(tpPointsChoose))        for i in range(len(tpPointsChoose) - 1):            print('i', i)            cv2.line(img2, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 2)        # ----------------------------------------------------------------------        # ----------点击到pointMax时可以提取去绘图----------------         cv2.imshow('src', img2)        # -------------------------右键按下清除轨迹-----------------------------    if event == cv2.EVENT_RBUTTONDOWN:  # 右键点击        print("right-mouse")        pointsCount = 0        tpPointsChoose = []        lsPointsChoose = []        print(len(tpPointsChoose))        for i in range(len(tpPointsChoose) - 1):            print('i', i)            cv2.line(img2, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 2)        cv2.imshow('src', img2)     # -------------------------双击 结束选取-----------------------------    if event == cv2.EVENT_LBUTTONDBLCLK:     # -----------绘制感兴趣区域-----------        ROI_byMouse()        ROI_bymouse_flag = 1        lsPointsChoose = []         def ROI_byMouse():    global src, ROI, ROI_flag, mask2    mask = np.zeros(img.shape, np.uint8)    pts = np.array([lsPointsChoose], np.int32)  # pts是多边形的顶点列表(顶点集)    pts = pts.reshape((-1, 1, 2))    # 这里 reshape 的第一个参数为-1, 表明这一维的长度是根据后面的维度的计算出来的。    # OpenCV中需要先将多边形的顶点坐标变成顶点数×1×2维的矩阵,再来绘制     # --------------画多边形---------------------    mask = cv2.polylines(mask, [pts], True, (255, 255, 255))    ##-------------填充多边形---------------------    mask2 = cv2.fillPoly(mask, [pts], (255, 255, 255))    cv2.imshow('mask', mask2)    cv2.imwrite('mask.jpg', mask2)    image,contours, hierarchy = cv2.findContours(cv2.cvtColor(mask2, cv2.COLOR_BGR2GRAY), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)    ROIarea = cv2.contourArea(contours[0])    print("ROIarea:",ROIarea)    ROI = cv2.bitwise_and(mask2, img)    cv2.imwrite('ROI.jpg', ROI)    cv2.imshow('ROI', ROI) img = cv2.imread('3.png')# ---------------------------------------------------------# --图像预处理,设置其大小# height, width = img.shape[:2]# size = (int(width * 0.3), int(height * 0.3))# img = cv2.resize(img, size, interpolation=cv2.INTER_AREA)# ------------------------------------------------------------ROI = img.copy()cv2.namedWindow('src')cv2.setMouseCallback('src', on_mouse)cv2.imshow('src', img)cv2.waitKey(0)cv2.destroyAllWindows()

你可以增加更多的功能。。。附:鼠标点击事件 :

'''EVENT_FLAG_ALTKEY = 32  摁住AltEVENT_FLAG_CTRLKEY = 8  摁住CtrlEVENT_FLAG_LBUTTON = 1  摁住左键EVENT_FLAG_MBUTTON = 4  摁住中键EVENT_FLAG_RBUTTON = 2  摁住右键EVENT_FLAG_SHIFTKEY = 16 摁住ShiftEVENT_LBUTTONDBLCLK = 7  左键双击EVENT_LBUTTONDOWN = 1  左键击下EVENT_LBUTTONUP = 4   左键弹起EVENT_MBUTTONDBLCLK = 9  中键双击EVENT_MBUTTONDOWN = 3  中键击下EVENT_MBUTTONUP = 6   中键弹起EVENT_MOUSEHWHEEL = 11  滚动条向左,flags>0。向右,flags<0EVENT_MOUSEMOVE = 0   鼠标移动EVENT_MOUSEWHEEL = 10  滚动条向上,flags>0。向下,flags<0EVENT_RBUTTONDBLCLK = 8  中键双击EVENT_RBUTTONDOWN = 2  中键击下EVENT_RBUTTONUP = 5   中键弹起'''

关于“python+opencv图像分割如何实现分割不规则ROI区域”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯