文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

从架构思维角度分析分布式锁方案

2024-04-02 19:55

关注

1 介绍

前面的文章我们介绍了分布式系统和它的CAP原理:一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)。

参考这篇《分布式事务CAP两阶段提交及三阶段提交详解》

我们知道,一个分布式系统无法同时满足三个特性,所以在设计系统之初,就有一个特性要被妥协和牺牲,因为分区容错性的不可或缺性,一般我们的选择是AP或者CP,这就要求我们要么舍弃强一致性,要么舍弃高可用。

为了达到数据的一致性,或者说至少达到数据的最终一致性,我们需要一些额外的方法来保证,比如分布式事务,分布式锁等等。

2 关于分布式锁

在单体系统中,我们经常会遇到很多高并发的场景,比如热点数据、热点缓存,短时间会有大量的请求进行访问,当多个线程同时访问共享资源的时候,就可能产生数据不一致的情况。

为了保证操作的顺序性、原子性,所以我们需要辅助,比如在线程间中加锁,当某个线程得到资源的时候,就对当前的资源进行加锁,等完成操作之后,进行释放,其他线程就可以继续使用了。

Java在多线程实现中,专门提供了一些锁机制来保障线程的互斥同步(synchronized/ReentrantLock)等。

1 synchronized(object:this){
 2    // todo 业务逻辑
 3 }
 4 ====================================
 5 Lock lock = new ReentrantLock(); 
 6 Condition condition = lock.newCondition(); 
 7 lock.lock(); 
 8 try { 
 9  while(这边是条件表达式) { 
10    condition.wait(); 
11    // todo 业务逻辑 
12   } 
13  } finally { 
14     lock.unlock(); 
15 }

这种方式对于同一个module里面的操作是没什么问题,但是在分布式系统中,就没什么用了,比如很典型的支付场景、跨行转账场景,均属于多系统之间的资源操作。

所以,为了解决这个问题,我们就必须引入分布式锁,来保障多个不同系统对共享资源进行互斥访问。

分布式锁需要解决的问题一般包含如下:

1、排他性:分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个线程执行。

2、避免死锁:锁在执行一段有限的时间之后,会被释放(正常释放或异常导致自动释放),并且可以被重入,即当前线程可重复获取。

3、高可用/高性能:获取锁和释放锁具备高可用;获取和释放锁的性能优良。

3 分布式锁的实现方案

分布式锁的实现,比较常见的方案有3种:

1、基于数据库实现分布式锁

2、基于缓存(Redis或其他类型缓存)实现分布式锁

3、基于Zookeeper实现分布式锁

这三种方案,从实现的复杂度上来看,从1到3难度依次递增。而且并不是每种解决方案都是完美的,它们都有各自的特性,还是需要根据实际的场景进行抉择的。

3.1  基于数据库实现

3.1.1 乐观锁的实现方式

乐观锁机制其实就是在数据库表中引入一个版本号(version)字段来实现。如下,再表上添加了一个version字段,并且设置为bigint类型:

1 CREATE TABLE `t_pay` (
2 `id` BIGINT ( 20 ) NOT NULL AUTO_INCREMENT,
3 `pay_id` BIGINT (8) NOT NULL COMMENT '支付id',
4 `pay_count` BIG (<strong>8</strong>) DEFAULT 0 not NULL COMMENT '支付次数',
5 `balance` DECIMAL (6,2) DEFAULT 0 not NULL COMMENT '总额度',
6 `version` BIGINT (10) DEFAULT 0  NOT NULL COMMENT '版本号',
7 PRIMARY KEY ( `id` )
8 ) ENGINE = INNODB AUTO_INCREMENT = 137587 DEFAULT CHARSET = utf8 COMMENT = '用户支付信息表';

在每次进行数据库表之前先查询一下当前记录信息,然后执行更新语句并且让指定字段进行自增,即 version = version+1 (因为MySQL同一张表只支持一个自增键,这边已经被id用了)。

修改完将新的数据与新的version更新到数据表中,更新的同时检查目前数据库里version值是不是之前的那个version,如果是,则正常更新。

如果不是,则更新失败,说明在这个执行间隙有其它的进程去更新过数据了,这时候如果强行更新进去,支付次数和总额度就不对了。操作如下:

1 -- 先查询数据信息
2 select pay_id,pay_count,balance,version from t_pay where id= #{id}
3 -- 判断当前表中的version 是否与刚才查出的version一致,是的话正常更新
4 update t_pay set pay_count=paycount + 1, balance = balance + '具体消费额度' ,version = version+1 where id=#{id} and version= #{version};

根据返回修改记录条数来判断当前更新是否生效,如果改动的是0条数据,说明version发生了变更,导致改动无效,这时候可以根据自己业务逻辑来判断是否回滚事务。

下面图例分析一下:

举例如图,你跟你老婆用同一个账户在支付,你支付燃气费,你老婆够买手表,如果没有锁机制,在并发的情况下,可能会出现同时被扣25和8000,导致最终余额的不正确。

但是如果使用乐观锁机制,当两个请求同时到达的时候,需要获取到账号信息包括版本号信息,不管是A操作(支付燃气费)还是B操作(购买手表),都会将版本号加1,即version=2,

那么另外一个操作执行的时候,发现当前版本号变成了2,不再是之前读取的 1,则更新失败。

通过上面这个例子可以看出来,使用「乐观锁」机制,必须得满足:

a)锁服务要有递增的版本号 version

b)每次更新数据的时候都必须先判断版本号对不对,然后再写入新的版本号

3.1.2 悲观锁的实现方式

悲观锁也叫作排它锁,在MySQL中是基于 for update  语法来实现加锁的,下面用伪代码来演示,例如:

1 // 锁定的方法
 2 public boolean lock(){
 3     connection.setAutoCommit(false)
 4     while(true){
 5         result = 
 6         select * from t_pay where 
 7         id = 100 for update;
 8         if(result){
 9          // 结果不为空,
10          // 则说明获取到了锁
11             return true;
12         }
13         // 没有获取到锁,继续获取
14         sleep(1000);
15     }
16     return false;
17 }
18 
19 // 释放锁
20 connection.commit();

上面的示例中,user表中,id是主键,通过 for update 操作,数据库在查询的时候就会给这条记录加上排它锁。(需要注意的是,在InnoDB中只有检索字段加了索引的,才会是行级锁,否者是表级锁,所以这个id字段要加索引),

当这条记录加上排它锁之后,其它线程是无法操作这条记录的。

那么,这样的话,我们就可以认为获得了排它锁的这个线程是拥有了分布式锁,然后就可以执行我们想要做的业务逻辑,当逻辑完成之后,再调用上述释放锁的语句即可。

3.1.3 数据库锁的优缺点

直接使用数据库,容易理解、操作简单。

但是会有各种各样的问题,在解决问题的过程中会使整个方案变得越来越复杂。操作数据库需要一定的开销,性能问题需要考虑,特别是高并发场景下。

使用数据库的行级锁并不一定靠谱,尤其是当我们的锁表并不大的时候。

3.2基于Redis实现

3.2.1 基于缓存实现分布式锁

相比较于基于数据库实现分布式锁的方案来说,基于缓存来实现在性能方面会表现的更好一点。类似Redis可以多集群部署的,解决单点问题。

基于Redis实现的锁机制,主要是依赖redis自身的原子操作,例如:

1 # 判断是否存在,不存在设值,并提供自动过期时间
2 SET key value NX PX millisecond
3 
4 # 删除某个key
5 DEL key [key …]

NX:只在在键不存在时,才对键进行设置操作,SET key value NX 效果等同于 SETNX key value
PX millisecond:设置键的过期时间为millisecond毫秒,当超过这个时间后,设置的键会自动失效

如果需要把上面的支付业务实现,则需要改写如下:

1 # 设置账户Id为17124的账号的值为1,如果不存在的情况下,并设置过期时间为500ms
2 SET pay_id_17124 1 NX PX 500
3 
4 # 进行删除
5 DEL pay_id_17124

上述代码示例是指,

当redis中不存在pay_key这个键的时候,才会去设置一个pay_key键,键的值为 1,且这个键的存活时间为500ms。

当某个进程设置成功之后,就可以去执行业务逻辑了,等业务逻辑执行完毕之后,再去进行解锁。而解锁之前或者自动过期之前,其他进程是进不来的。

实现锁机制的原理是:这个命令是只有在某个key不存在的时候,才会执行成功。那么当多个进程同时并发的去设置同一个key的时候,就永远只会有一个进程成功。

解锁很简单,只需要删除这个key就可以了。

另外,针对redis集群模式的分布式锁,可以采用redis的Redlock机制。

需要注意的是,如何设置恰当的超时时间,如果设置的失效时间太短,方法没等执行完,锁就自动释放了,那么就会产生并发问题。如果设置的时间太长,其他获取锁的线程就要多等一段时间。这个问题使用数据库实现分布式锁同样存在。

总结:可以使用缓存来代替数据库来实现分布式锁,会提供更好的性能,同时,很多缓存服务都是集群部署的,可以避免单点问题。

并且很多缓存服务都提供了可以用来实现分布式锁的方法,比如redis的setnx方法。并且,缓存服务也都提供了对数据的过期自动删除的支持,可以直接设置超时时间来控制锁的释放。

3.2.2缓存实现分布式锁的优缺点

优点是性能好,实现起来较为方便。缺点是通过超时时间来控制锁的失效时间并不是十分的靠谱。

3.3 基于Zookeeper实现

3.3.1 实现过程

基于zookeeper临时有序节点可以实现分布式锁。

其原理如下:

1、每个请求的客户端,都去Zookeeper上的某个指定节点的目录下(比如是对某个对象的操作),去生成一个唯一的临时有序节点。

2、然后判断自己是否是这些有序节点中序号最小的一个,如果是,则算是获取了锁。

3、如果不是最小序号,则说明没有获取到锁,那么就需要在序列中找到比自己小的那个节点,对其注册事件监听(调用exits()方法确认节点在不在)。比如下面图中,client-3 生成 node-3,并监听node-2。

4、当监听到这个节点被删除了,那就再去判断一次自己当初创建的节点是否变成了序列中最小的。如果是,则获取锁,如果不是,则重复上述步骤。

1 //创建子节点
 2 private String createSaNode() throws KeeperException, InterruptedException {
 3 // 如果根节点不存在,则创建根节点
 4 Stat stat = zk.exists(ZNODE, false);
 5 if (stat == null) {
 6 zk.create(ZNODE, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
 7 }
 8 
 9 String hostName = System.getenv("HOSTNAME");
10 // 创建EPHEMERAL_SEQUENTIAL类型节点
11 String saPath = zk.create(ZNODE + "/" + SA_NODE_PREFIX,
12 hostName.getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE,
13 CreateMode.EPHEMERAL_SEQUENTIAL);
14 return saPath;
15 }

完整的实现方案可以参考:ZooKeeper开发实际应用案例实战

根据上诉的步骤,Zookeeper实际解决了如下问题:

下面图例说明:

Locker Object 是对需要竞争的资源进行持久的节点,下面的node-1到node-n 就是上面说的有序子节点,由不同进程的client去创建。

当进来一个客户端需要去竞争资源的时候,就跑到持久化节点下去按顺序创建一个直接点,然后看一下是不是最小的一个。

如果是最小的就获取到锁,可以继续后面的资源操作了。如果不是则监听比自己序号小的节点,比如client-3 订阅的是 node-2。

如果node-2被删除,自己被唤醒,再次判断自己是不是序列中最小的,如果是,则获取锁。

3.3.2 zk实现分布式锁的优缺点

优点:有效的解决单点问题,不可重入问题,非阻塞问题以及锁无法释放的问题。实现起来较为简单。

缺点:性能上不如使用缓存实现分布式锁。 需要对ZK的原理有所了解。

3.4 三种方案的对比总结

上面几种方式,并不是都能做到十全十美,就像CAP一样,在复杂性、可靠性、性能 三方面无法同时满足一样。所以,更多的是根据不同的应用场景选择最合适的方案。

特性

实现复杂度角度

性能角度

可靠性角度

数据库

缓存

Zookeeper

以上就是从架构思维角度分析分布式锁方案的详细内容,更多关于分布式锁架构思维方案的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯