文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python Pandas数据预处理:你知道数据标准化吗?

2024-11-30 05:02

关注

数据预处理包括以下几个方面:

标准化经常容易与规范化混淆,但它们指的是不同的东西。规范化涉及将不同比例的度量值调整到一个共同的比例,而标准化则是将特征值转换为均值为零,标准差为1的分布。标准化也是通过 z-score 转换来实现的,其中新值是用当前值与平均值之间的差,除以标准差计算得来的。

Z-score 是一种统计度量值,用于确定单个数据点与数据集其余部分的距离,它可以用来检测数据集中的异常值。

在本教程中,我们将考虑两种类型的标准化:

一、数据准备(Data Preparation)

本教程的示例数据集还是继续沿用上一个教程(Part 3)中的新冠肺炎数据集,获取方式见上一个教程的文末。

首先,我们需要导入 Python pandas 库,并通过 read_csv() 函数读取数据集。然后我们可以删除所有具有 NaN 值的列,通过 dropna() 函数来实现的。

import pandas  as pd


df = pd.read_csv('datasets/dpc-covid19-ita-regioni.csv')
df.dropna(axis=1, inplace=True)
df.tail(10)

图片

二、z 得分(Z-Score)

前面说过,标准化是将数据集中的特征值转换为具有均值为 0 和标准差为 1 的分布。Z-Score 标准化的公式为:

其中  是当前特征值, 是均值, 是标准差。

例如,我们可以计算列 deceduti 的 z 得分。我们可以使用 scipy.stats 库的 zscore() 函数实现。

from scipy.stats import zscore


df['zscore-deceduti'] = zscore(df['deceduti'])
df['zscore-deceduti']

图片

三、z 映射(Z-Map)

z 映射的值是用当前特征值与比较数组的平均值之差,除以比较数组的标准差计算得来的。例如,我们可以计算列 deceduti 的 z-map,使用列 terapia_intenva 作为比较数组。我们可以使用 scipy.stats 库的 zmap() 函数实现。

from scipy.stats import zmap


df['zmap-deceduti'] = zmap(df['deceduti'], df['terapia_intensiva'])
df['zmap-deceduti']

图片

四、异常值检测(Detect Outliers)

标准化可以用来检测和删除异常值。例如,可以定义一个阈值来指定哪些值可以被视为异常值。在本例中,我们设置 threshold = 2。我们可以在原始数据框中添加一个新的列 outliers,如果特征值小于-2或大于2,则将异常标记列的值设置为 True,否则为 False。我们可以使用 numpy 库的 where() 函数来执行比较。

import numpy as np


threshold = 2
df['outliers'] = np.where((df['zscore-deceduti'] - threshold > 0), True, 
                          np.where(df['zscore-deceduti'] + threshold < 0, True, False))
df['outliers']

图片

现在,我们可以使用 drop() 函数删除异常值。

df.drop(df[df['outliers'] == True].index, inplace=True)
df

图片

五、总结(Summary)

在本教程中,我解释了规范化和标准化之间的区别,规范化在某种程度上包括标准化。

数据标准化的方法有两种:z-score 和 z-map。

标准化可用于检测和删除数据集中的异常值。此外,它还可以用于在不同的数据集之间进行比较。


来源:自由学习屋内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯