一、函数解释
setdiff1d(ar1, ar2, assume_unique=False)
1.功能:找到2个数组中集合元素的差异。
2.返回值:在ar1中但不在ar2中的已排序的唯一值。
3.参数:
ar1:array_like 输入数组。
ar2:array_like 输入比较数组。
assume_unique:bool。如果为True,则假定输入数组是唯一的,即可以加快计算速度。 默认值为False。
二、具体示例
1.assume_unique = False的情况:
a = np.array([1,2,3])
b = np.array([4,5,6])
c = np.setdiff1d(a, b)
print(c)#[1 2 3]
a = np.array([1,2,3])
b = np.array([1,2,3])
c = np.setdiff1d(a, b)
print(c)#[]
a = np.array([1,2,3])
b = np.array([2,3,4])
c = np.setdiff1d(a, b)
print(c)#[1]
a = np.array([1,2,3,4])
b = np.array([3,4,5,6])
c = np.setdiff1d(a, b)
print(c)#[1 2]
a = np.array([1,2,3,2,4,1])
b = np.array([3,4,5,6])
c = np.setdiff1d(a, b)
print(c)#[1 2]
a = np.array([8,2,3,2,4,1])
b = np.array([7,4,5,6,3])
c = np.setdiff1d(a, b)
print(c)#[1 2 8]
可以从最后看出返回的值从小到大排序,并且唯一。(8在a的第1位,2在a中重复了2次)
2.assume_unique = True的情况:
a = np.array([3,2,1])
b = np.array([4,5,6])
c = np.setdiff1d(a, b,True)
print(c)#[3 2 1]
a = np.array([8,2,3,2,4,1])
b = np.array([7,4,5,6,3])
c = np.setdiff1d(a, b,True)
print(c)#[8 2 2 1]
a = np.array([8,2,3,4,2,4,1])
b = np.array([7,9,5,6,3])
c = np.setdiff1d(a, b,True)
print(c)#[8 2 4 2 4 1]
可以看出把在a中的但是不在b中的元素按a中的顺序排序,并且不合并重复的元素,即假定输入数组也是唯一的,因此相比于False确实提升了运算速度。
三、整体代码
import numpy as np
def main():
a = np.array([1,2,3])
b = np.array([4,5,6])
c = np.setdiff1d(a, b)
print(c)#[1 2 3]
a = np.array([1,2,3])
b = np.array([1,2,3])
c = np.setdiff1d(a, b)
print(c)#[]
a = np.array([1,2,3])
b = np.array([2,3,4])
c = np.setdiff1d(a, b)
print(c)#[1]
a = np.array([1,2,3,4])
b = np.array([3,4,5,6])
c = np.setdiff1d(a, b)
print(c)#[1 2]
a = np.array([1,2,3,2,4,1])
b = np.array([3,4,5,6])
c = np.setdiff1d(a, b)
print(c)#[1 2]
a = np.array([8,2,3,2,4,1])
b = np.array([7,4,5,6,3])
c = np.setdiff1d(a, b)
print(c)#[1 2 8]
a = np.array([3,2,1])
b = np.array([4,5,6])
c = np.setdiff1d(a, b,True)
print(c)#[3 2 1]
a = np.array([8,2,3,2,4,1])
b = np.array([7,4,5,6,3])
c = np.setdiff1d(a, b,True)
print(c)#[8 2 2 1]
a = np.array([8,2,3,4,2,4,1])
b = np.array([7,9,5,6,3])
c = np.setdiff1d(a, b,True)
print(c)#[8 2 4 2 4 1]
if __name__ == '__main__':
main()
补充:Python编程之numpy库函数in1d的使用
最近利用Python作数值分析时使用到numpy库下的in1d函数。in1d函数与excel中vlookup函数和MATLAB中ismember函数有相似之处。其作用在于在序列B中寻找与序列A相同的值,并返回一逻辑值(True,False)或逻辑值构成的向量。
具体例子见下文
设mask为逻辑值向量,矩阵x的第一列为待查找向量,d为被查询向量(或值),即查找x中与d中指定元素相同的值,并返回逻辑值向量mask。mask是由一系列True和False值构成,True代表找到相同的值,而False代表没找到相同的值。演示如下:
mask= np.in1d(x.values[:,1],d[1],invert=False) ##x为DataFrame型数据,x.values[:,1]表示取第二列值
x_temp=x[mask]
示取第二列值
x_temp=x[mask]
该例旨在查找 x 的第二列值中与d向量中第二个元素相同的部分 ,并返回mask逻辑向量;然后x_temp返回x中mask逻辑值为True的行。
mask向量的类型为bool,查看具体值下图所示:
值得注意的地方在于in1d函数中invert参数的设置。当invert=True时,mask中的元素值为True的部分对x.values[:,1]中与当前查找的元素d[i]不同的部分(i为当前查找位置),相同的部分则为false;当invert=False时,mask中的元素值为True的部分对x.values[:,1]中与当前查找的元素d[i]相同的部分(i为当前查找位置)。
演示见下图:
当mask= np.in1d(x.values[:,1],d[2],invert=True)
当mask= np.in1d(x.values[:,1],d[2],invert=False)时
以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。