本篇内容主要讲解“python中的Sobel算子如何使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python中的Sobel算子如何使用”吧!
说明
Sobel算子根据像素点的上下、左右相邻点的灰度加权差,在边缘达到极值的现象来检测边缘。它具有平滑的噪声功能,并提供更准确的边缘方向信息。由于Sobel算子结合了高斯平滑度和微分求导(分化),因此结果会更具抗噪性,当对精度要求不高时,Sobel算子是一种常用的边缘检测方法。
Sobel算子仍然是过滤器,但它有方向。
dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])
实例
# coding=utf-8import cv2import numpy as np img = cv2.imread("D:/test/26.png", 0) '''在Sobel函数的第二个参数这里使用了cv2.CV_16S。因为OpenCV文档中对Sobel算子的介绍中有这么一句:“in the case of 8-bit input images it will result in truncated derivatives”。即Sobel函数求完导数后会有负值,还有会大于255的值。而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。因此要使用16位有符号的数据类型,即cv2.CV_16S。在经过处理后,别忘了用convertScaleAbs()函数将其转回原来的uint8形式。否则将无法显示图像,而只是一副灰色的窗口。convertScaleAbs()的原型为:dst = cv2.convertScaleAbs(src[, dst[, alpha[, beta]]])其中可选参数alpha是伸缩系数,beta是加到结果上的一个值。结果返回uint8类型的图片。由于Sobel算子是在两个方向计算的,最后还需要用cv2.addWeighted(...)函数将其组合起来。其函数原型为:dst = cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])其中alpha是第一幅图片中元素的权重,beta是第二个的权重,gamma是加到最后结果上的一个值。''' x = cv2.Sobel(img, cv2.CV_16S, 1, 0)y = cv2.Sobel(img, cv2.CV_16S, 0, 1) absX = cv2.convertScaleAbs(x)# 转回uint8absY = cv2.convertScaleAbs(y) dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0) cv2.imshow("orign", img)cv2.imshow("absX", absX)cv2.imshow("absY", absY) cv2.imshow("Result", dst) cv2.waitKey(0)cv2.destroyAllWindows()
到此,相信大家对“python中的Sobel算子如何使用”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!