CAN基础知识
标准的CAN 数据为8字节,即64位,但是CAN FD的最大数据可为64字节,为512位,其中的帧ID分为标准帧和扩展帧,其中用11位标准帧,用29位表示扩展帧。
CAN 信号
信号具体指的是CAN数据的多少位到多少位间代表一个具体的信号,如5位到16位表示车辆的行驶速度,即完整的CAN数据可以表示多个信号。
can信号获取:
#include <iostream>
#include <array>
unsigned char msbmask[] = {
0xFF, 0xFE, 0xFC, 0xF8,
0xF0, 0xE0, 0xC0, 0x80
};
unsigned char lsbmask[] = {
0x01, 0x03, 0x07, 0x0F,
0x1F, 0x3F, 0x7F, 0xFF
};
#define BITSET(p,n) ((p) |= (1u <<(n)))
#define BITCLR(p,n) ((p) &= ~(1u <<(n)))
#define BITGET(i,n) ((i) & (1u << (n)))
typedef struct {
unsigned char* can_data_ptr;
int len;
int msb_pos;
int lsb_pos;
}can_signal;
static can_signal cansingal;
int can_data_assignment(unsigned char* candata, int msbpos, int lsbpos, int lens)
{
cansingal.can_data_ptr = (unsigned char*)malloc(lens);
memcpy((void *)cansingal.can_data_ptr, (const void *)candata,lens);
cansingal.len = lens;
cansingal.msb_pos = msbpos;
cansingal.lsb_pos = lsbpos;
return 0;
}
unsigned int can_data_transfer_signal()
{
int a = 0;
int b = 0;
int c = 0;
int d = 0;
unsigned int singal = 0;
printf("%d %d\n", cansingal.lsb_pos, cansingal.msb_pos);
printf("%02x %02x %02x %02x\n", cansingal.can_data_ptr[0], cansingal.can_data_ptr[1], cansingal.can_data_ptr[2], cansingal.can_data_ptr[3]);
a = cansingal.lsb_pos / 8;
b = cansingal.lsb_pos % 8;
printf("a %d b %d\n", a, b);
cansingal.can_data_ptr[a] = cansingal.can_data_ptr[a] & msbmask[b];
c= cansingal.msb_pos / 8;
d = cansingal.msb_pos % 8;
printf("c %d d %d\n", c, d);
cansingal.can_data_ptr[c] = cansingal.can_data_ptr[c] & lsbmask[d];
printf("%02x %02x %02x %02x\n", cansingal.can_data_ptr[0], cansingal.can_data_ptr[1], cansingal.can_data_ptr[2], cansingal.can_data_ptr[3]);
for (int i = cansingal.lsb_pos, j = 0; i <= cansingal.msb_pos; ++i, ++j)
{
a = i / 8;
b = i % 8;
if ( BITGET(cansingal.can_data_ptr[a], b) )
{
BITSET(singal, j);
}
else
{
BITCLR(singal,j);
}
}
return singal;
}
void can_data_free(void)
{
free(cansingal.can_data_ptr);
cansingal.len = 0;
cansingal.lsb_pos = 0;
cansingal.msb_pos = 0;
return;
}
int main(int argc, char* argv[])
{
unsigned char candata[4] = { 0x44, 0xFE, 0x23, 0x81};
printf("%02x %02x %02x %02x\n", candata[0], candata[1], candata[2], candata[3]);
can_data_assignment(candata,31,14,4);
unsigned int c = can_data_transfer_signal();
can_data_free();
printf("%d\n", c);
system("pause");
return 0;
}
如上图,can数据的其中4字节为0x44,0xFE,0x23,0x81, 分别对应0到32位的数据,现在获取14位到31位的数据,形成具体的信号值。
运行结果:
C语言涉及到知识
位操作、指针与数组的操作、MSB LSB的表索引。
数组与指针关系:
指针操作 +1 即 p + 1是指向下一位的地址,若p指向的类型为int类型,则p+1 指向下一个int类型数据的地址,若p指向的是个结构体,则p+1指向相对应结构体下一个元素的地址。
其中p[i] = *(p+i)
#include <stdio.h>
int main(int argc, char *argv[]){
int a[] = {1, 3, 5, 7, 9};
int *p, i, n;
p = a;
n = sizeof(a) / sizeof(int);
printf("%p %p %p\n", a, a+1, a+2);
for(i = 0; i < n; i++){
printf("%d %d %d\n", a[i], *(p+i), *(a+i), p[i]);
}
puts("");
return 0;
}
//打印出来的结果如下
0xbf92c324 0xbf92c328 0xbf92c32c
1 1 1
3 3 3
5 5 5
7 7 7
9 9 9
到此这篇关于C/C++关于实现CAN信号的获取方法的文章就介绍到这了,更多相关C++ CAN信号内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!