文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C#中泛型的运作原理是什么

2023-06-07 14:00

关注

这篇文章给大家介绍C#中泛型的运作原理是什么,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

一.泛型之前的故事#

我们肯定会想到用object来作为类型参数,因为在C#中,所有类型都是基于Object类型的。因此Object是所有类型的最基类,那么我们的可扩容数组类如下:

 public class ArrayExpandable { private object?[] _items = null; private int _defaultCapacity = 4; private int _size; public object? this[int index] { get { if (index < 0 || index >= _size)   throw new ArgumentOutOfRangeException(nameof(index)); return _items[index]; } set { if (index < 0 || index >= _size)   throw new ArgumentOutOfRangeException(nameof(index)); _items[index] = value; } } public int Capacity { get => _items.Length; set { if (value < _size) {  throw new ArgumentOutOfRangeException(nameof(value)); } if (value != _items.Length) {  if (value > 0)  {  object[] newItems = new object[value];  if (_size > 0)  {  Array.Copy(_items, newItems, _size);  }  _items = newItems;  }  else  {  _items = new object[_defaultCapacity];  } } } } public int Count => _size; public ArrayExpandable() { _items = new object?[0]; } public ArrayExpandable(int capacity) { _items = new object?[capacity]; } public void Add(object? value) { //数组元素为0或者数组元素容量满 if (_size == _items.Length) EnsuresCapacity(_size + 1); _items[_size] = value; _size++; } private void EnsuresCapacity(int size) { if (_items.Length < size) { int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2; if (newCapacity < size) newCapacity = size; Capacity = newCapacity; } }

然后我们来验证下:

var arrayStr = new ArrayExpandable();var strs = new string[] { "ryzen", "reed", "wymen" };for (int i = 0; i < strs.Length; i++){ arrayStr.Add(strs[i]); string value = (string)arrayStr[i];//改为int value = (int)arrayStr[i] 运行时报错 Console.WriteLine(value);}Console.WriteLine($"Now {nameof(arrayStr)} Capacity:{arrayStr.Capacity}");var array = new ArrayExpandable();for (int i = 0; i < 5; i++){ array.Add(i); int value = (int)array[i]; Console.WriteLine(value);}Console.WriteLine($"Now {nameof(array)} Capacity:{array.Capacity}");

输出:

Copy
ryzen
reed
wymen
gavin
Now arrayStr Capacity:4
0
1
2
3
4
Now array Capacity:8

貌似输出结果是正确的,能够动态进行扩容,同样的支持值类型Struct的int32和引用类型的字符串,但是其实这里会发现一些问题,那就是

  1. 引用类型string进行了类型转换的验证

  2. 值类型int32进行了装箱和拆箱操作,同时进行类型转换类型的检验

  3. 发生的这一切都是在运行时的,假如类型转换错误,得在运行时才能报错

大致执行模型如下:

引用类型:

C#中泛型的运作原理是什么

值类型:

C#中泛型的运作原理是什么

 那么有没有一种方法能够避免上面遇到的三种问题呢?在借鉴了cpp的模板和java的泛型经验,在C#2.0的时候推出了更适合.NET体系下的泛型

二.用泛型实现#

public class ArrayExpandable<T>{ private T[] _items; private int _defaultCapacity = 4; private int _size; public T this[int index] { get { if (index < 0 || index >= _size)   throw new ArgumentOutOfRangeException(nameof(index)); return _items[index]; } set { if (index < 0 || index >= _size)   throw new ArgumentOutOfRangeException(nameof(index)); _items[index] = value; } } public int Capacity { get => _items.Length; set { if (value < _size) {  throw new ArgumentOutOfRangeException(nameof(value)); } if (value != _items.Length) {  if (value > 0)  {  T[] newItems = new T[value];  if (_size > 0)  {  Array.Copy(_items, newItems, _size);  }  _items = newItems;  }  else  {  _items = new T[_defaultCapacity];  } } } } public int Count => _size; public ArrayExpandable() { _items = new T[0]; } public ArrayExpandable(int capacity) { _items = new T[capacity]; } public void Add(T value) { //数组元素为0或者数组元素容量满 if (_size == _items.Length) EnsuresCapacity(_size + 1); _items[_size] = value; _size++; } private void EnsuresCapacity(int size) { if (_items.Length < size) { int newCapacity = _items.Length == 0 ? _defaultCapacity : _items.Length * 2; if (newCapacity < size) newCapacity = size; Capacity = newCapacity; } } }

那么测试代码则改写为如下:

var arrayStr = new ArrayExpandable<string>();var strs = new string[] { "ryzen", "reed", "wymen", "gavin" };for (int i = 0; i < strs.Length; i++){ arrayStr.Add(strs[i]); string value = arrayStr[i];//改为int value = arrayStr[i] 编译报错 Console.WriteLine(value);}Console.WriteLine($"Now {nameof(arrayStr)} Capacity:{arrayStr.Capacity}");var array = new ArrayExpandable<int>();for (int i = 0; i < 5; i++){ array.Add(i); int value = array[i]; Console.WriteLine(value);}Console.WriteLine($"Now {nameof(array)} Capacity:{array.Capacity}");

输出:

Copy
ryzen
reed
wymen
gavin
Now arrayStr Capacity:4
0
1
2
3
4
Now array Capacity:8

我们通过截取部分ArrayExpandable<T>的IL查看其本质是个啥:

//声明类.class public auto ansi beforefieldinit MetaTest.ArrayExpandable`1<T> extends [System.Runtime]System.Object{ .custom instance void [System.Runtime]System.Reflection.DefaultMemberAttribute::.ctor(string) = ( 01 00 04 49 74 65 6D 00 00 )   } //Add方法.method public hidebysig instance void Add(!T 'value') cil managed{ // 代码大小 69 (0x45) .maxstack 3 .locals init (bool V_0) IL_0000: nop IL_0001: ldarg.0 IL_0002: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_0007: ldarg.0 IL_0008: ldfld !0[] class MetaTest.ArrayExpandable`1<!T>::_items IL_000d: ldlen IL_000e: conv.i4 IL_000f: ceq IL_0011: stloc.0 IL_0012: ldloc.0 IL_0013: brfalse.s IL_0024 IL_0015: ldarg.0 IL_0016: ldarg.0 IL_0017: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_001c: ldc.i4.1 IL_001d: add IL_001e: call instance void class MetaTest.ArrayExpandable`1<!T>::EnsuresCapacity(int32) IL_0023: nop IL_0024: ldarg.0 IL_0025: ldfld !0[] class MetaTest.ArrayExpandable`1<!T>::_items IL_002a: ldarg.0 IL_002b: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_0030: ldarg.1 IL_0031: stelem !T IL_0036: ldarg.0 IL_0037: ldarg.0 IL_0038: ldfld int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_003d: ldc.i4.1 IL_003e: add IL_003f: stfld int32 class MetaTest.ArrayExpandable`1<!T>::_size IL_0044: ret} // end of method ArrayExpandable`1::Add

 原来定义的时候就是用了个T作为占位符,起一个模板的作用,我们对其实例化类型参数的时候,补足那个占位符,我们可以在编译期就知道了其类型,且不用在运行时进行类型检测,而我们也可以对比ArrayExpandable和ArrayExpandable<T>在类型为值类型中的IL,查看是否进行拆箱和装箱操作,以下为IL截取部分:

ArrayExpandable:

 IL_0084: newobj instance void GenericSample.ArrayExpandable::.ctor() IL_0089: stloc.2 IL_008a: ldc.i4.0 IL_008b: stloc.s V_6 IL_008d: br.s IL_00bc IL_008f: nop IL_0090: ldloc.2 IL_0091: ldloc.s V_6 IL_0093: box [System.Runtime]System.Int32 //box为装箱操作 IL_0098: callvirt instance void GenericSample.ArrayExpandable::Add(object) IL_009d: nop IL_009e: ldloc.2 IL_009f: ldloc.s V_6 IL_00a1: callvirt instance object GenericSample.ArrayExpandable::get_Item(int32) IL_00a6: unbox.any [System.Runtime]System.Int32 //unbox为拆箱操作

ArrayExpandable:

 IL_007f: newobj instance void class GenericSample.ArrayExpandable`1<int32>::.ctor() IL_0084: stloc.2 IL_0085: ldc.i4.0 IL_0086: stloc.s V_6 IL_0088: br.s IL_00ad IL_008a: nop IL_008b: ldloc.2 IL_008c: ldloc.s V_6 IL_008e: callvirt instance void class GenericSample.ArrayExpandable`1<int32>::Add(!0) IL_0093: nop IL_0094: ldloc.2 IL_0095: ldloc.s V_6 IL_0097: callvirt instance !0 class GenericSample.ArrayExpandable`1<int32>::get_Item(int32)

 我们从IL也能看的出来,ArrayExpandable<T>的T作为一个类型参数,在编译后在IL已经确定了其类型,因此当然也就不存在装拆箱的情况,在编译期的时候IDE能够检测类型,因此也就不用在运行时进行类型检测,但并不代表不能通过运行时检测类型(可通过is和as),还能通过反射体现出泛型的灵活性,后面会讲到

 其实有了解ArrayList和List的朋友就知道,ArrayExpandable和ArrayExpandable<T>其实现大致就是和它们一样,只是简化了很多的版本,我们这里可以通过 BenchmarkDotNet 来测试其性能对比,代码如下:

 [SimpleJob(RuntimeMoniker.NetCoreApp31,baseline:true)] [SimpleJob(RuntimeMoniker.NetCoreApp50)] [MemoryDiagnoser] public class TestClass { [Benchmark] public void EnumAE_ValueType() {  ArrayExpandable array = new ArrayExpandable();  for (int i = 0; i < 10000; i++)  {  array.Add(i);//装箱  int value = (int)array[i];//拆箱  }  array = null;//确保进行垃圾回收 } [Benchmark] public void EnumAE_RefType() {  ArrayExpandable array = new ArrayExpandable();  for (int i = 0; i < 10000; i++)  {  array.Add("r");  string value = (string)array[i];  }  array = null;//确保进行垃圾回收 } [Benchmark] public void EnumAE_Gen_ValueType() {  ArrayExpandable<int> array = new ArrayExpandable<int>();  for (int i = 0; i < 10000; i++)  {  array.Add(i);  int value = array[i];  }  array = null;//确保进行垃圾回收; } [Benchmark] public void EnumAE_Gen_RefType() {  ArrayExpandable<string> array = new ArrayExpandable<string>();  for (int i = 0; i < 10000; i++)  {  array.Add("r");  string value = array[i];  }  array = null;//确保进行垃圾回收; } [Benchmark] public void EnumList_ValueType() {  List<int> array = new List<int>();  for (int i = 0; i < 10000; i++)  {  array.Add(i);  int value = array[i];  }  array = null;//确保进行垃圾回收; } [Benchmark] public void EnumList_RefType() {  List<string> array = new List<string>();  for (int i = 0; i < 10000; i++)  {  array.Add("r");  string value = array[i];  }  array = null;//确保进行垃圾回收; } [Benchmark(Baseline =true)] public void EnumAraayList_valueType() {  ArrayList array = new ArrayList();  for (int i = 0; i < 10000; i++)  {  array.Add(i);  int value = (int)array[i];  }  array = null;//确保进行垃圾回收; } [Benchmark] public void EnumAraayList_RefType() {  ArrayList array = new ArrayList();  for (int i = 0; i < 10000; i++)  {  array.Add("r");  string value = (string)array[i];  }  array = null;//确保进行垃圾回收; } }

 我还加入了.NETCore3.1和.NET5的对比,且以.NETCore3.1的EnumAraayList_valueType方法为基准,性能测试结果如下:

C#中泛型的运作原理是什么

用更直观的柱形图来呈现:

C#中泛型的运作原理是什么

 我们能看到在这里List的性能在引用类型和值类型中都是所以当中是最好的,不管是执行时间、GC次数,分配的内存空间大小,都是最优的,同时.NET5在几乎所有的方法中性能都是优于.NETCore3.1,这里还提一句,我实现的ArrayExpandable和ArrayExpandable<T>性能都差于ArrayList和List,我还没实现IList和各种方法,只能说句dotnet基金会牛逼

三.泛型的多态性#

多态的声明#

类、结构、接口、方法、和委托可以声明一个或者多个类型参数,我们直接看代码:

interface IFoo<InterfaceT>{ void InterfaceMenthod(InterfaceT interfaceT);}class Foo<ClassT, ClassT1>: IFoo<StringBuilder>{ public ClassT1 Field;  public delegate void MyDelegate<DelegateT>(DelegateT delegateT); public void DelegateMenthod<DelegateT>(DelegateT delegateT, MyDelegate<DelegateT> myDelegate) { myDelegate(delegateT); } public static string operator +(Foo<ClassT, ClassT1> foo,string s) { return $"{s}:{foo.GetType().Name}"; } public List<ClassT> Property{ get; set; } public ClassT1 Property1 { get; set; } public ClassT this[int index] => Property[index];//没判断越界 public Foo(List<ClassT> classT, ClassT1 classT1) { Property = classT; Property1 = classT1; Field = classT1; Console.WriteLine($"构造函数:parameter1 type:{Property.GetType().Name},parameter2 type:{Property1.GetType().Name}"); } //方法声明了多个新的类型参数 public void Method<MenthodT, MenthodT1>(MenthodT menthodT, MenthodT1 menthodT1) { Console.WriteLine($"Method<MenthodT, MenthodT1>:{(menthodT.GetType().Name)}:{menthodT.ToString()}," + $"{menthodT1.GetType().Name}:{menthodT1.ToString()}"); } public void Method(ClassT classT) { Console.WriteLine($"{nameof(Method)}:{classT.GetType().Name}:classT?.ToString()"); } public void InterfaceMenthod(StringBuilder interfaceT) {  Console.WriteLine(interfaceT.ToString()); }}

控制台测试代码:

static void Main(string[] args){ Test(); Console.ReadLine();}static void Test(){ var list = new List<int>() { 1, 2, 3, 4 }; var foo = new Foo<int, string>(list, "ryzen"); var index = 0; Console.WriteLine($"索引:索引{index}的值:{foo[index]}");  Console.WriteLine($"Filed:{foo.Field}"); foo.Method(2333); foo.Method<DateTime, long>(DateTime.Now, 2021); foo.DelegateMenthod<string>("this is a delegate", DelegateMenthod); foo.InterfaceMenthod(new StringBuilder().Append("InterfaceMenthod:this is a interfaceMthod")); Console.WriteLine(foo+"重载+运算符");}static void DelegateMenthod(string str){ Console.WriteLine($"{nameof(DelegateMenthod)}:{str}");}

输出如下:

构造函数:parameter1 type:List`1,parameter2 type:String
索引:索引0的值:1
Filed:ryzen
Method:Int32:classT?.ToString()
Method<MenthodT, MenthodT1>:DateTime:2021/03/02 11:45:40,Int64:2021
DelegateMenthod:this is a delegate
InterfaceMenthod:this is a interfaceMthod
重载+运算符:Foo`2

我们通过例子可以看到的是:

多态的继承#

父类和实现类或接口的接口都可以是实例化类型,直接看代码:

interface IFooBase<IBaseT>{}interface IFoo<InterfaceT>: IFooBase<string>{ void InterfaceMenthod(InterfaceT interfaceT);}class FooBase<ClassT>{}class Foo<ClassT, ClassT1>: FooBase<ClassT>,IFoo<StringBuilder>{}

我们可以通过例子看出:

多态的递归#

我们定义如下一个类和一个方法,且不会报错:

 class D<T> { } class C<T> : D<C<C<T>>>  {  void Foo() {  var foo = new C<C<T>>();  Console.WriteLine(foo.ToString()); } }

因为T能在实例化的时候确定其类型,因此也支持这种循环套用自己的类和方法的定义

四.泛型的约束#

where的约束#

我们先上代码:

 class FooBase{ } class Foo : FooBase  {   }  class someClass<T,K> where T:struct where K :FooBase,new() { } static void TestConstraint() {  var someClass = new someClass<int, Foo>();//通过编译  //var someClass = new someClass<string, Foo>();//编译失败,string不是struct类型  //var someClass = new someClass<string, long>();//编译失败,long不是FooBase类型 }

再改动下Foo类:

class Foo : FooBase { public Foo(string str) { }}static void TestConstraint(){ var someClass = new someClass<int, Foo>();//编译失败,因为new()约束必须类含有一个无参构造器,可以再给Foo类加上个无参构造器就能编译通过}

 我们可以看到,通过where语句,可以对类型参数进行约束,而且一个类型参数支持多个约束条件(例如K),使其在实例化类型参数的时候,必须按照约束的条件对应实例符合条件的类型,而where条件约束的作用就是起在编译期约束类型参数的作用

out和in的约束#

 说到out和in之前,我们可以说下协变和逆变,在C#中,只有泛型接口和泛型委托可以支持协变和逆变

协变#

我们先看下代码:

class FooBase{ }class Foo : FooBase {}interface IBar<T> { T GetValue(T t);}class Bar<T> : IBar<T>{ public T GetValue(T t) {  return t; }}static void Test(){ var foo = new Foo(); FooBase fooBase = foo;//编译成功 IBar<Foo> bar = new Bar<Foo>(); IBar<FooBase> bar1 = bar;//编译失败 }

 这时候你可能会有点奇怪,为啥那段代码会编译失败,明明Foo类可以隐式转为FooBase,但作为泛型接口类型参数实例化却并不能呢?使用out约束泛型接口IBar的T,那段代码就会编译正常,但是会引出另外一段编译报错:

interface IBar<out T> { T GetValue(string str);//编译成功 //T GetValue(T t);//编译失败 T不能作为形参输入,用out约束T支持协变,T可以作为返回值输出 }IBar<Foo> bar = new Bar<Foo>();IBar<FooBase> bar1 = bar;//编译正常

因此我们可以得出以下结论:

而支持迭代的泛型接口IEnumerable也是这么定义的:

 public interface IEnumerable<out T> : IEnumerable {  new IEnumerator<T> GetEnumerator(); }

逆变#

我们将上面代码改下:

class FooBase{ }class Foo : FooBase {}interface IBar<T> { T GetValue(T t);}class Bar<T> : IBar<T>{ public T GetValue(T t) {  return t; }}static void Test1(){ var fooBase = new FooBase(); Foo foo = (Foo)fooBase;//编译通过,运行时报错 IBar<FooBase> bar = new Bar<FooBase>(); IBar<Foo> bar1 = (IBar<Foo>)bar;//编译通过,运行时报错}

我们再改动下IBar,发现出现另外一处编译失败

interface IBar<in T> { void GetValue(T t);//编译成功 //T GetValue(T t);//编译失败 T不能作为返回值输出,用in约束T支持逆变,T可以作为返回值输出} IBar<FooBase> bar = new Bar<FooBase>(); IBar<Foo> bar1 = (IBar<Foo>)bar;//编译通过,运行时不报错 IBar<Foo> bar1 = bar;//编译通过,运行时不报错

因此我们可以得出以下结论:

同样的泛型委托Action就是个逆变的例子:

public delegate void Action<in T>(T obj);

五.泛型的反射#

我们先来看看以下代码:

static void Main(string[] args){ var lsInt = new ArrayExpandable<int>(); lsInt.Add(1); var lsStr = new ArrayExpandable<string>(); lsStr.Add("ryzen"); var lsStr1 = new ArrayExpandable<string>(); lsStr.Add("ryzen");}

然后通过ildasm查看其IL,开启视图-》显示标记值,查看Main方法:

void Main(string[] args) cil managed{ .entrypoint // 代码大小  52 (0x34) .maxstack 2 .locals  init (class MetaTest.ArrayExpandable`1<int32> V_0,   class MetaTest.ArrayExpandable`1<string> V_1,   class MetaTest.ArrayExpandable`1<string> V_2) IL_0000: nop IL_0001: newobj  instance void class MetaTest.ArrayExpandable`1<int32>::.ctor()  IL_0006: stloc.0 IL_0007: ldloc.0 IL_0008: ldc.i4.1 IL_0009: callvirt instance void class MetaTest.ArrayExpandable`1<int32>::Add(!0)  IL_000e: nop IL_000f: newobj  instance void class MetaTest.ArrayExpandable`1<string>::.ctor()  IL_0014: stloc.1 IL_0015: ldloc.1 IL_0016: ldstr  "ryzen"  IL_001b: callvirt instance void class MetaTest.ArrayExpandable`1<string>::Add(!0)  IL_0020: nop IL_0021: newobj  instance void class MetaTest.ArrayExpandable`1<string>::.ctor()  IL_0026: stloc.2 IL_0027: ldloc.1 IL_0028: ldstr  "ryzen"  IL_002d: callvirt instance void class MetaTest.ArrayExpandable`1<string>::Add(!0)  IL_0032: nop IL_0033: ret} // end of method Program::Main

打开元数据表将上面所涉及到的元数据定义表和类型规格表列出:

metainfo:

-----------定义部分TypeDef #2 (02000003)-------------------------------------------------------TypDefName: MetaTest.ArrayExpandable`1 (02000003)Flags  : [Public] [AutoLayout] [Class] [AnsiClass] [BeforeFieldInit] (00100001)Extends : 0100000C [TypeRef] System.Object1 Generic Parameters(0) GenericParamToken : (2a000001) Name : T flags: 00000000 Owner: 02000003Method #8 (0600000a) -------------------------------------------------------MethodName: Add (0600000A)Flags  : [Public] [HideBySig] [ReuseSlot] (00000086)RVA  : 0x000021f4ImplFlags : [IL] [Managed] (00000000)CallCnvntn: [DEFAULT]hasThis ReturnType: Void1 ArgumentsArgument #1: Var!01 Parameters(1) ParamToken : (08000007) Name : value flags: [none] (00000000)------类型规格部分TypeSpec #1 (1b000001)-------------------------------------------------------TypeSpec : GenericInst Class MetaTest.ArrayExpandable`1< I4> //14代表int32MemberRef #1 (0a00000c)-------------------------------------------------------Member: (0a00000c) .ctor: CallCnvntn: [DEFAULT]hasThis ReturnType: VoidNo arguments.MemberRef #2 (0a00000d)-------------------------------------------------------Member: (0a00000d) Add: CallCnvntn: [DEFAULT]hasThis ReturnType: Void1 ArgumentsArgument #1: Var!0TypeSpec #2 (1b000002)-------------------------------------------------------TypeSpec : GenericInst Class MetaTest.ArrayExpandable`1< String>MemberRef #1 (0a00000e)-------------------------------------------------------Member: (0a00000e) .ctor: CallCnvntn: [DEFAULT]hasThis ReturnType: VoidNo arguments.MemberRef #2 (0a00000f)-------------------------------------------------------Member: (0a00000f) Add: CallCnvntn: [DEFAULT]hasThis ReturnType: Void1 ArgumentsArgument #1: Var!0

 这时候我们就可以看出,元数据为泛型类ArrayExpandable<T>定义一份定义表,生成两份规格,也就是当你实例化类型参数为int和string的时候,分别生成了两份规格代码,同时还发现以下的现象:

var lsInt = new ArrayExpandable<int>();//引用的是类型规格1b000001的成员0a00000c .ctor构造lsInt.Add(1);//引用的是类型规格1b000001的成员0a00000d Add var lsStr = new ArrayExpandable<string>();//引用的是类型规格1b000002的成员0a00000e .ctor构造lsStr.Add("ryzen");//引用的是类型规格1b000002的成员0a00000f Addvar lsStr1 = new ArrayExpandable<string>();//和lsStr一样lsStr.Add("ryzen");//和lsStr一样

 非常妙的是,当你实例化两个一样的类型参数string,是共享一份类型规格的,也就是同享一份本地代码,因此上面的代码在线程堆栈和托管堆的大致是这样的:

C#中泛型的运作原理是什么

由于泛型也有元数据的存在,因此可以对其做反射:

Console.WriteLine($"-----------{nameof(lsInt)}---------------");Console.WriteLine($"{nameof(lsInt)} is generic?:{lsInt.GetType().IsGenericType}");Console.WriteLine($"Generic type:{lsInt.GetType().GetGenericArguments()[0].Name}");Console.WriteLine("---------Menthods:");foreach (var method in lsInt.GetType().GetMethods()){  Console.WriteLine(method.Name);}Console.WriteLine("---------Properties:");foreach (var property in lsInt.GetType().GetProperties()){  Console.WriteLine($"{property.PropertyType.ToString()}:{property.Name}");}Console.WriteLine($"\n-----------{nameof(lsStr)}---------------");Console.WriteLine($"{nameof(lsStr)} is generic?:{lsStr.GetType().IsGenericType}");Console.WriteLine($"Generic type:{lsStr.GetType().GetGenericArguments()[0].Name}");Console.WriteLine("---------Menthods:");foreach (var method in lsStr.GetType().GetMethods()){  Console.WriteLine(method.Name);}Console.WriteLine("---------Properties:");foreach (var property in lsStr.GetType().GetProperties()){  Console.WriteLine($"{property.PropertyType.ToString()}:{property.Name}");}

输出:

-----------lsInt---------------
lsInt is generic?:True
Generic type:Int32
---------Menthods:
get_Item
set_Item
get_Capacity
set_Capacity
get_Count
Add
GetType
ToString
Equals
GetHashCode
---------Properties:
System.Int32:Item
System.Int32:Capacity
System.Int32:Count


-----------lsStr---------------
lsStr is generic?:True
Generic type:String
---------Menthods:
get_Item
set_Item
get_Capacity
set_Capacity
get_Count
Add
GetType
ToString
Equals
GetHashCode
---------Properties:
System.String:Item
System.Int32:Capacity
System.Int32:Count

六.总结#

 泛型编程作为.NET体系中一个很重要的编程思想,主要有以下亮点:

关于C#中泛型的运作原理是什么就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯