文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

计算机竞赛 基于大数据的社交平台数据爬虫舆情分析可视化系统

2023-08-30 10:09

关注

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的社交平台数据爬虫舆情分析可视化系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于Python的社交平台大数据挖掘及其可视化。

2 实现效果

实现功能

可视化统计

Hashtag统计
在这里插入图片描述
地理位置信息的可视化

在这里插入图片描述

话题结果可视化

矩阵图

在这里插入图片描述
旭日图

在这里插入图片描述

情感分析的可视化

在这里插入图片描述

web模块界面展示

在这里插入图片描述

3 LDA模型

2003年,D.Blei等人提出了广受欢迎的LDA(Latentdirichlet
allocation)主题模型[8]。LDA除了进行主题的分析外,还可以运用于文本分类、推荐系统等方面。

LDA模型可以描述为一个“上帝掷骰子”的过程,首先,从主题库中随机抽取一个主题,该主题编号为K,接着从骰子库中拿出编号为K的骰子X,进行投掷,每投掷一次,就得到了一个词。不断的投掷它,直到到达预计的文本长
在这里插入图片描述
可以用矩阵的乘法来表示上述的过程:

回到LDA模型来说,LDA模型的输入是一篇一篇用BOW(bag of
words)表示的文档,即用该文档中无序的单词序列来表示该文档(忽略文档中的语法和词语的先后关系)。LDA的输出是每篇文档的主题分布矩阵和每个主题下的单词分布矩阵。简而言之,LDA主题模型的任务就是已知左边的矩阵,通过一些方法,得到右边两个小矩阵。这里的“一些方法”即为LDA采样的方法,目前最主要的有两种,一种是变分贝叶斯推断(variationalBayes,
VB),另一种叫做吉布斯采样(Gibbs Sampling),其中吉布斯采样也被称为蒙特卡洛马尔可夫 (Markov Chain Monte
Carlo,MCMC)采样方法。

总的来说,MCMC实现起来更加简单方便,而VB的速度比MCMC来得快,研究表明他们具有差不多相同的效果。所以,对于大量的数据,采用VB是更为明智的选择。

4 情感分析方法

本文采用的情感分析可以说是一个标准的机器学习的分类问题。目标是给定一条推文,将其分为正向情感、负向情感、中性情感。

预处理

特征提取

文本特征

特征选择

本文 特征选择主要是针对于 N-grams 特征 的,采用方法如下:


设定min_df(min_df>=0)以及threshold(0 <= threshold <= 1)
对于每个在N-grams的词:
统计其出现于正向、负向、中性的次数,得到pos_cnt, neg_cnt, neu_cnt,以及出现总数N,然后分别计算
pos = pos_cnt / N
neg = neg_cnt / N
neu = neu_cnt / N
对于 pos,neg,neu中任一一个大于阈值threshold 并且N > min_df的,保留该词,否则进行删除。

上述算法中滤除了低频的词,因为这可能是一些拼写错误的词语;并且,删除了一些极性不那么明显的词,有效的降低了维度。

分类器选择

在本文中,使用两个分类器进行对比,他们均使用sklearn提供的接口 。第一个分类器选用SVM线性核分类器,参数设置方面,C =
0.0021,其余均为默认值。第二个分类器是Logistic Regression分类器,其中,设置参数C=0.01105。

在特征选择上,min_df=5, threshold=0.6。

实验

测试集名

在这里插入图片描述

5 部分核心代码

    import json    from django.http import HttpResponse    from django.shortcuts import render    from topic.models.TopicTrendsManager import TopicTrendsManager    from topic.models.TopicParameterManager import TopicParameterManager    def index(request):        return render(request, 'topic/index.html')    # TODO 检查参数的合法性, and change to post method    def stream_trends(request):        param_manager = TopicParameterManager(request.GET.items())        topic_trends = TopicTrendsManager(param_manager)        res = topic_trends.get_result(param_manager)        return HttpResponse(json.dumps(res), content_type="application/json")    def stop_trends(request):        topic_trends = TopicTrendsManager(None)        topic_trends.stop()        res = {"stop": "stop success"}        return HttpResponse(json.dumps(res), content_type="application/json")    def text(request):        return render(request, 'topic/visualization/result_text.html')    def bubble(request):        return render(request, 'topic/visualization/result_bubble.html')    def treemap(request):        return render(request, 'topic/visualization/result_treemap.html')    def sunburst(request):        return render(request, 'topic/visualization/result_sunburst.html')    def funnel(request):        return render(request, 'topic/visualization/result_funnel.html')    def heatmap(request):        return render(request, 'topic/visualization/result_heatmap.html')    def hashtags_pie(request):        return render(request, 'topic/visualization/result_hashtags_pie.html')    def hashtags_histogram(request):        return render(request, 'topic/visualization/result_hashtags_histogram.html')    def hashtags_timeline(request):        return render(request, 'topic/visualization/result_hashtags_timeline.html')

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

来源地址:https://blog.csdn.net/m0_43533/article/details/132511422

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-人工智能
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯