文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pandas自定义shift与DataFrame求差集的小技巧

2024-04-02 19:55

关注

大家好,我是小小明。今天分享两个小技巧:

Pandas的高级shift偏移

有很多玩量化的朋友经常碰到类似这样的问题:

image-20210719013514514

其中有位量化大佬居然在半年后的今天又问了我一遍怎么实现这样的效果,他居然忘了我之前给他写过实现。为了避免有人再碰到类似的问题,特别写下此文。

我们知道Pandas默认的API是不支持这样的操作的,这个只能自己想办法实现。下面我借助数值索引实现这样的功能,并封装起来。

最终我们封装的方法如下:

import numpy as np
import pandas as pd

def adv_shift(s, n, na_value=pd.NA):
    t = np.arange(s.shape[0])-n
    t[t < 0] = s.shape[0]
    tmp = s.append(pd.Series(na_value))
    return pd.Series(tmp.iloc[t].values, index=s.index)

然后生成测试数据完成这个需求:

df = pd.DataFrame({"a": [200, 300, 500, 800, 600], "b": [1, 1, 1, 2, 1]})
df['c'] = df.a-adv_shift(df.a, df.b, 0)
df
 abc
02001200
13001100
25001200
38002500
46001-200

可以看到结果完全满足要求。

如果你希望直接给DataFrame对象增加高级偏移adv_shift方法,则可以这样写:

def adv_shift(self, field, n, na_value=pd.NA):
    t = np.arange(self.shape[0])-self[n]
    s = self[field]
    t[t < 0] = s.shape[0]
    tmp = s.append(pd.Series(na_value))
    return pd.Series(tmp.iloc[t].values, index=s.index)

pd.DataFrame.adv_shift = adv_shift

调用方式:

df['c'] = df.a-df.adv_shift("a", "b", 0)
df
 abc
02001200
13001100
25001200
38002500
46001-200

最终结果与上述一致。

Datafream对象求差集

下面我们再看看如何求解Datafream对象的交集、并集和差集:

import pandas as pd

df1 = pd.DataFrame([[1, 11], [2, 22], [3, 33]],
                   columns=['a', 'b'])
df2 = pd.DataFrame([[0, 0], [1, 11], [2, 22], [4, 44]], columns=['a', 'b'])
display(df1)
display(df2)

image-20210719014818463

交集和并集一般的实现都是使用merge方法。

取交集:

df1.merge(df2)

去并集:

df1.merge(df2, how='outer')

关于取差集,我采用的是去重法。思路是,将df1与df2拼接,然后将重复的都去掉不保留,为了将df2全部去掉,将df2拼接两次,这样所有df2的数据都会产生重新而被删除,df1存在于与df2一致的数据也会被删除。

代码为:

pd.concat([df1, df2, df2]).drop_duplicates(keep=False)

测试结果:

image-20210719020032890

总结 

到此这篇关于Pandas自定义shift与DataFrame求差集的文章就介绍到这了,更多相关Pandas shift与DataFrame求差集内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯