文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何进行kubernetes scheduler基于map/reduce模式实现

2023-06-19 09:35

关注

如何进行kubernetes scheduler基于map/reduce模式实现,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴

1. 设计基础

1.1 两阶段: 单点与聚合

在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合

在单点阶段,会根据当前算法针对单个node计算 在聚合阶段,则会根据当前单点阶段计算完成后,来进行聚合

1.2 并行: 节点与算法

单点和聚合两阶段在计算的时候,都是并行的,但是对象则不同,其中单点阶段并行是针对单个node的计算,而聚合阶段则是针对算法级别的计算,通过这种设计分离计算,从而避免多goroutine之间数据竞争,无锁加速优选的计算

1.3 map与reduce

而map与reduce则是针对一个上面并行的两种具体实现,其中map中负责单node打分,而reduce则是针对map阶段的打分进行聚合后,根据汇总的结果进行二次打分计算

1.4 weight

map/reduce阶段都是通过算法计算,如果我们要进行自定义的调整,针对单个算法,我们可以调整其在预选流程中的权重,从而进行定制自己的预选流程 

1.5 随机分布

当进行优先级判断的时候,肯定会出现多个node优先级相同的情况,在优选节点的时候,会进行随机计算,从而决定是否用当前优先级相同的node替换之前的最合适的node

2. 源码分析 

优选的核心流程主要是在PrioritizeNodes中,这里只介绍其关键的核心数据结构设计

2.1 无锁计算结果保存

无锁计算结果的保存主要是通过下面的二维数组实现, 如果要存储一个算法针对某个node的结果,其实只需要通过两个索引即可:算法索引和节点索引,同理如果我吧针对单个node的索引分配给一个goroutine,则其去其他的goroutine则就可以并行计算 如何进行kubernetes scheduler基于map/reduce模式实现

// 在计算的时候,会传入nodes []*v1.Node的数组,存储所有的节点,节点索引主要是指的该部分results := make([]schedulerapi.HostPriorityList, len(priorityConfigs), len(priorityConfigs))

2.2 基于节点索引的Map计算

如何进行kubernetes scheduler基于map/reduce模式实现 之前在预选阶段介绍过ParallelizeUntil函数的实现,其根据传入的数量来生成计算索引,放入chan中,后续多个goroutine从chan中取出数据直接进行计算即可

workqueue.ParallelizeUntil(context.TODO(), 16, len(nodes), func(index int) {// 根据节点和配置的算法进行计算nodeInfo := nodeNameToInfo[nodes[index].Name]            // 获取算法的索引for i := range priorityConfigs {if priorityConfigs[i].Function != nil {continue}var err error                                // 通过节点索引,来进行针对单个node的计算结果的保存results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)if err != nil {appendError(err)results[i][index].Host = nodes[index].Name}}})

2.3 基于算法索引的Reduce计算

如何进行kubernetes scheduler基于map/reduce模式实现 基于算法的并行,则是为每个算法的计算都启动一个goroutine,每个goroutine通过算法索引来进行该算法的所有map阶段的结果的读取,并进行计算,后续结果仍然存储在对应的位置

// 计算策略的分值for i := range priorityConfigs {if priorityConfigs[i].Reduce == nil {continue}wg.Add(1)go func(index int) {defer wg.Done()if err := priorityConfigs[index].Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {appendError(err)}if klog.V(10) {for _, hostPriority := range results[index] {klog.Infof("%v -> %v: %v, Score: (%d)", util.GetPodFullName(pod), hostPriority.Host, priorityConfigs[index].Name, hostPriority.Score)}}}(i)}// Wait for all computations to be finished.wg.Wait()

2.4 优先级打分结果统计

根据之前的map/reduce阶段,接下来就是将针对所有node的所有算法计算结果进行累加即可

// Summarize all scores.result := make(schedulerapi.HostPriorityList, 0, len(nodes))for i := range nodes {result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})// 便利所有的算法配置for j := range priorityConfigs {result[i].Score += results[j][i].Score * priorityConfigs[j].Weight}for j := range scoresMap {result[i].Score += scoresMap[j][i].Score}}

2.5 根据优先级随机筛选host

这里的随机筛选是指的当多个host优先级相同的时候,会有一定的概率用当前的node替换之前的优先级相等的node(到目前为止的优先级最高的node), 其主要通过cntOfMaxScore和rand.Intn(cntOfMaxScore)来进行实现

func (g *genericScheduler) selectHost(priorityList schedulerapi.HostPriorityList) (string, error) {if len(priorityList) == 0 {return "", fmt.Errorf("empty priorityList")}maxScore := priorityList[0].Scoreselected := priorityList[0].HostcntOfMaxScore := 1for _, hp := range priorityList[1:] {if hp.Score > maxScore {maxScore = hp.Scoreselected = hp.HostcntOfMaxScore = 1} else if hp.Score == maxScore {cntOfMaxScore++if rand.Intn(cntOfMaxScore) == 0 {// Replace the candidate with probability of 1/cntOfMaxScoreselected = hp.Host}}}return selected, nil}

3. 设计总结

优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注编程网行业资讯频道,感谢您对编程网的支持。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯