文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Spark Streaming 编程入门指南

2022-02-15 21:30

关注

Spark Streaming 编程入门指南

Spark Streaming 是核心Spark API的扩展,可实现实时数据流的可伸缩,高吞吐量,容错流处理。可以从许多数据源(例如Kafka,Flume,Kinesis或TCP sockets)中提取数据,并且可以使用复杂的算法处理数据,这些算法用高级函数表示,如map、reduce、join和window。最后,可以将处理后的数据推送到文件系统,数据库和实时仪表板。实际上,可以在数据流上应用Spark的机器学习和图形处理算法。

在内部,它的工作方式如下。 Spark Streaming接收实时输入数据流,并将数据分成批次,然后由Spark引擎进行处理,以生成批次的最终结果流。

Spark Streaming提供了一种高级抽象,称为离散流或DStream,它表示连续的数据流。DStreams可以从Kafka、Flume和Kinesis等源的输入数据流创建,也可以通过在其他DStreams上应用高级操作创建。在内部,DStream表示为RDDs序列。

1. 了解Spark

Apache Spark 是一个用于大规模数据处理的统一分析引擎

    

特性:

将工作负载运行速度提高100倍

Apache Spark使用最新的DAG调度程序,查询优化器和物理执行引擎,为批处理数据和流数据提供了高性能。

易用

可以使用Java,Scala,Python,R和SQL快速编写应用程序

通用

结合SQL、流和复杂的分析

Spark为包括SQL和DataFrames,用于机器学习的MLlib,GraphX和Spark Streaming在内的一堆库提供支持。您可以在同一应用程序中无缝组合这些库。

到处运行

Spark可在Hadoop,Apache Mesos,Kubernetes,独立或云中运行。它可以访问各种数据源

可以在EC2,Hadoop YARN,Mesos或Kubernetes上使用其独立集群模式运行Spark。访问HDFS,Alluxio,Apache Cassandra,Apache HBase,Apache Hive和数百种其他数据源中的数据。

2. 入门案例

统计单词出现的次数,这个例子在Hadoop中用MapReduce也写过。

JavaStreamingContext是java版的StreamingContext。它是Spark Streaming功能的主要入口点。它提供了从输入源创建JavaDStream和JavaPairDStream的方法。可以使用context.sparkContext访问内部的org.apache.spark.api.java.JavaSparkContext。在创建和转换DStream之后,可以分别使用context.start()和context.stop()启动和停止流计算。

 1 public static void main(String[] args) throws InterruptedException {
 2     // Create a local StreamingContext with two working thread and batch interval of 1 second
 3     SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
 4     JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
 5 
 6     // Create a DStream that will connect to hostname:port, like localhost:9999
 7     JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999);
 8 
 9     // Split each line into words
10     JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());
11 
12     // Count each word in each batch
13     JavaPairDStream<String, Integer> pairs = words.mapToPair(s -> new Tuple2<>(s, 1));
14     JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey((i1, i2) -> i1 + i2);
15 
16     // Print the first ten elements of each RDD generated in this DStream to the console
17     wordCounts.print();
18 
19     // Start the computation
20     jssc.start();
21     // Wait for the computation to terminate
22     jssc.awaitTermination();
23 }

3. 基本概念

3.1. Maven依赖

1 org.apache.spark
2     spark-streaming_2.12
3     2.4.5
4     provided
5 

为了从其它数据源获取数据,需要添加相应的依赖项spark-streaming-xyz_2.12。例如:

1 
2     org.apache.spark
3     spark-streaming-kafka-0-10_2.12
4     2.4.5
5 

3.2. 初始化StreamingContext

为了初始化一个Spark Streaming程序,必须创建一个StreamingContext对象,该对象是所有Spark Streaming功能的主要入口点。 

我们可以从SparkConf对象中创建一个JavaStreamingContext对象

1 import org.apache.spark.SparkConf;
2 import org.apache.spark.streaming.Duration;
3 import org.apache.spark.streaming.api.java.JavaStreamingContext;
4 
5 SparkConf conf = new SparkConf().setAppName(appName).setMaster(master);
6 JavaStreamingContext ssc = new JavaStreamingContext(conf, new Duration(1000)); 

appName 参数是显示在集群UI上的你的应用的名字

master 参数是一个Spark、 Mesos 或 YARN 集群URL,或者也可以是一个特定的字符串“local[*]”表示以本地模式运行。实际上,当在集群上运行时,肯定不希望对在程序中对master进行硬编码,而希望通过spark-submit启动应用程序并在其中接收它。然而,对于本地测试,你可以传“local[*]”来运行Spark Streaming。

还可以从一个已存在的JavaSparkContext中创建一个JavaStreamingContext对象

1 import org.apache.spark.streaming.api.java.*;
2 
3 JavaSparkContext sc = ...   //existing JavaSparkContext
4 JavaStreamingContext ssc = new JavaStreamingContext(sc, Durations.seconds(1));

在定义完context之后,必须做以下事情:

  1. 通过创建input DStreams来定义input sources
  2. 通过对DStreams应用transformation(转换)和output(输出)操作来定义流计算
  3. 用streamingContext.start()来开始接收数据并处理它
  4. 用streamingContext.awaitTermination()等待处理停止(手动停止或由于任何错误)
  5. 用streamingContext.stop()可以手动停止

需要记住的点:

3.3. DStreams(离散流)

Discretized StreamDStream 是Spark Streaming提供的基本抽象。它表示一个连续的数据流,可以是从源接收的输入数据流,也可以是通过转换输入流生成的已处理数据流。在内部,DStream由一系列连续的RDD表示,这是Spark对不变的分布式数据集的抽象。DStream中的每个RDD都包含来自特定间隔的数据,如下图所示。 

在DStream上执行的任何操作都转换为对基础RDD的操作。例如,最简单的将一行句子转换为单词的例子中,flatMap操作应用于行DStream中的每个RDD,以生成单词DStream的RDD。如下图所示:

 

3.4. Input DStreams 和 Receivers

Input DStream是表示从源接收的输入数据流。在上图中,lines是输入DStream,因为它表示从netcat服务器接收的数据流。每一个输入DStream都关联着一个Receiver对象,该对象从源接收数据并将其存储在Spark的内存中以进行处理。

Spark Streaming提供了两类内置的streaming源:

如果要在流应用程序中并行接收多个数据流,则可以创建多个输入DStream。这将创建多个Receiver(接收器),这些接收器将同时接收多个数据流。重要的是要记住,必须为Spark Streaming应用程序分配足够的内核(或线程,如果在本地运行),以处理接收到的数据以及运行接收器。

需要记住的点:

Basic Sources 

为了从文件中读取数据,可以通过StreamingContext.fileStream[KeyClass, ValueClass, InputFormatClass]来创建一个DStream

例如:streamingContext.textFileStream(dataDirectory);

Spark Streaming将监视目录dataDirectory并处理在该目录中创建的所有文件

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯