文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何快速上手MMdnn

2023-06-27 11:19

关注

这篇“如何快速上手MMdnn”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“如何快速上手MMdnn”文章吧。

MMdnn 是微软开源的一套帮助用户在不同深度学习框架之间进行互操作的工具,包括模型转换和可视化。目前支持在 Caffe、Keras、MXNet、Tensorflow、CNTK、PyTorch 和 CoreML 等框架之间进行模型转换。

如何快速上手MMdnn

安装

通过以下命令行获取稳定版的 MMdnn:

pip install https://github.com/Microsoft/MMdnn/releases/download/0.1.3/mmdnn-0.1.3-py2.py3-none-any.whl

或者通过以下命令尝试最新版本:

pip install -U git+https://github.com/Microsoft/MMdnn.git@master

模型转换

业界和学界存在大量现有框架,适合开发者和研究者来设计模型,每个框架具备自己的网络结构定义和模型保存格式。框架之间的差距阻碍了模型的交互操作。

如何快速上手MMdnn

我们提供一个模型转换器,帮助开发者通过中间表征格式转换模型,以适合不同框架。

支持框架

每个支持的框架都有详细的 README 文档,它们可以在以下conversion件夹找到。

测试模型

我们在部分 ImageNet 模型上对当前支持的框架间模型转换功能进行了测试。

如何快速上手MMdnn

正在测试的框架: PyTorch CNTK Caffe2 ONNX 正在测试的模型: RNN 图像风格迁移 目标检测

模型可视化

你可以使用 MMdnn 模型可视化工具(http://vis.mmdnn.com/),提交自己的 IR json 文件进行模型可视化。为了运行下面的命令行,你需要使用喜欢的包管理器安装 requests、Keras、TensorFlow。

使用 Keras inception_v3 模型作为示例。

\1. 下载预训练模型:

python -m mmdnn.conversion.examples.keras.extract_model -n inception_v3

\2. 将预训练模型文件转换成中间表征格式:

python3 -m mmdnn.conversion._.convertToIR -f keras -d keras_inception_v3 -n imagenet_inception_v3.json

\3. 打开 MMdnn 模型可视化工具地址(http://mmdnn.eastasia.cloudapp.azure.com:8080/),选择文件 keras_inception_v3.json。

如何快速上手MMdnn

社区支持

本项目仍在继续开发与探索,它需要各位读者完善中间表征与支持的框架。因此,该项目的作者表示他非常希望有开发者能提供新的运算或扩展。

中间表征:中间表征在 protobuf 二进制文件中储存网络架构,在 NumPynative 格式中储存预训练权重。此外,目前 IR 权重数据使用的是 NHWC 格式。中间表征的细节请查看 ops.txt 和 graph.proto 文件。 框架:我们正在扩展到其它框架版本和可视化工具,例如 Caffe2、PyTorch 和 CoreML 等。此外,本项目也在积极开发 RNN 相关的操作方法。

使用案例

以下是该项目实现框架转换的基本案例,其中包括官方的教程和用户提供的各种案例,机器之心简要介绍了官方 Keras 到 CNTK 的转换教程。 官方教程:

Keras “inception_v3” to CNTK 用户案例:

MXNet “resnet 152 11k” to PyTorch MXNet “resnext” to Keras Tensorflow “resnet 101” to PyTorch Tensorflow “mnist mlp model” to CNTK Tensorflow “Inception_v3” to MXNet Caffe “AlexNet” to Tensorflow Caffe “inception_v4” to Tensorflow Caffe “VGG16_SOD” to Tensorflow Caffe “Squeezenet v1.1” to CNTK

Keras「inception_v3」模型到 CNTK 的转换

1. 安装 Keras 和 CNTK

pip install keraspip install https://cntk.ai/PythonWheel/CPU-Only/cntk-2.3-cp27-cp27mu-linux_x86_64.whl

or

pip installhttps://cntk.ai/PythonWheel/CPU-Only/cntk-2.3-cp35-cp35m-linux_x86_64.whl

2. 准备 Keras 模型

以下示例将首先下载预训练模型,然后使用简单的模型抽取器从 Keras 应用中获取模型,抽取器将抽取 Keras 模型架构和权重。

$ python -m mmdnn.conversion.examples.keras.extract_model -n inception_v3Using TensorFlow backend.Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.h696075776/96112376 [============================>.] - ETA: 0s...Network structure is saved as [imagenet_inception_v3.json].Network weights are saved as [imagenet_inception_v3.h6].

架构文件 imagenet_inception_v3.json 和权重文件 imagenet_inception_v3.h6 会下载至当前工作目录。

3. 将预训练模型文件转换为中间表征

$ python -m mmdnn.conversion._.convertToIR -f keras -d converted -n imagenet_inception_v3.json -w imagenet_inception_v3.h6Using TensorFlow backend....Network file [imagenet_inception_v3.json] is loaded successfully.IR network structure is saved as [converted.json].IR network structure is saved as [converted.pb].IR weights are saved as [converted.npy].

以上的命令会将 imagenet_inception_v3.json 作为神经网络架构的描述文件,imagenet_inception_v3.h6 作为预训练权重。然后计算出中间表征文件 converted.json 用于可视化,计算出 converted.proto 和 converted.npy 以进一步转换为其它框架。

4. 转换 IR 文件为 CNTK 模型

$ python -m mmdnn.conversion._.IRToCode -f cntk -d converted_cntk.py -n converted.pb -w converted.npyParse file [converted.pb] with binary format successfully.Target network code snippet is saved as [converted_cntk.py].

你将得到文件 converted_cntk.py,包括构建 Inception V3 网络的原始 CNTK 代码。

经过这三步,你已经将预训练 Keras Inception_v3 模型转换成 CNTK 网络文件 converted_cntk.py 和权重文件 converted.npy。你可以用这两个文件调整训练或推断。

5. 转存原始 CNTK 模型

$ python -m mmdnn.conversion.examples.cntk.imagenet_test -n converted_cntk -w converted.npy --dump cntk_inception_v3.dnn...CNTK model file is saved as [cntk_inception_v3.dnn], generated by [converted_cntk.py] and [converted.npy].

CNTK 可直接加载文件 cntk_inception_v3.dnn。

以上就是关于“如何快速上手MMdnn”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯