文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

一篇文章告诉你真实场景下服务端接口性能问题是如何解决的

2024-11-29 23:40

关注

性能优化是一个广泛而重要的话题。《Java程序性能优化》提到性能优化可分为五个层次:设计优化、代码优化、JVM优化、数据库优化、操作系统优化等。每个层次都涵盖许多方法论和最佳实践。本文无意进行全面详尽的概述,只是列举几个常用的Java代码优化方案,希望读者阅读后能实际应用到自己的代码中。

单例层面

在处理IO操作、数据库连接、配置文件解析加载等耗费大量系统资源的任务时,我们必须限制这些实例的创建,或者始终使用一个共享的实例,以节约系统资源。这种情况下就需要使用单例模式。

批量操作

若有100个请求,逐个执行显然效率较低。将这100个请求合并为一个请求进行批量操作,则能大幅提升效率。

特别是在数据库操作中,批量处理不仅比逐条执行效率更高,还能有效降低数据库连接数,提升应用的QPS上限。

Future模式处理

假设某项任务需花费一定时间执行,为避免无谓的等待,可先获取一个“提货单”——即Future,随后继续处理其他任务,直至“货物”抵达,即任务执行完成并获得结果。这时便可凭借“提货单”提取物品,即通过Future对象获取返回值。

伪代码

public class RealData implements Callable {
    protected String data;

    public RealData(String data) {
        this.data = data;
    }

    @Override
    public String call() throws Exception {
        // 通过sleep方法演示业务是缓慢的
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return data;
    }
}

public class Application {
    public static void main(String[] args) throws Exception {
        FutureTask futureTask =
                new FutureTask<>(new RealData("name"));
        ExecutorService executor =
                Executors.newFixedThreadPool(1); // 使用线程池
        // 执行FutureTask,相当于上例中的client.request("name")发送请求
        executor.submit(futureTask);
        // 这里可以用一个sleep代替对其他业务逻辑的处理
        // 在处理这些业务逻辑的同时,RealData也在创建,充分利用等待时间
        Thread.sleep(2000);
        // 使用真实数据
        // 如果call()没有执行完成,仍会等待
        System.out.println("数据=" + futureTask.get());
    }
}

线程池思路

合理运用线程池带来三大益处。首先,降低资源消耗:通过重复利用已创建的线程,降低线程的创建与销毁成本。其次,提高响应速度:任务到达时,无需等待线程创建即可立即执行。第三,提升线程可管理性:线程是珍贵资源,无节制地创建会消耗系统资源,降低系统稳定性;线程池能实现统一分配、优化和监控。

自 Java 5 开始,引入了并发编程新API,如Executor框架,内部采用线程池机制,位于java.util.concurrent包中。通过该框架控制线程的启动、执行和关闭,可简化并发编程操作。

伪代码

public class MultiThreadTest {
    public static void main(String[] args) {
        ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat("thread-%d").build();
        ExecutorService executor = new ThreadPoolExecutor(2, 5, 60L, TimeUnit.SECONDS, new LinkedBlockingQueue(), threadFactory);
        executor.execute(new Runnable() {
            @Override
            public void run() {
               System.out.println("Hello, world!");
            }
        });
        System.out.println(" ===> Main Thread! ");
    }
}

NIO处理

JDK自1.4版本起引入了新的I/O编程类库,即NIO。NIO不仅带来了高效的Buffer和Channel,还引入了基于Selector的非阻塞I/O机制,可以将多个异步I/O操作集中到一个或少数几个线程中进行处理。使用NIO替代阻塞I/O能够提高程序的并发吞吐能力,降低系统开销。

针对每个请求,如果为其单独开启一个线程来处理逻辑,当客户端数据传输是间歇性的而非连续的时,相应线程会处于I/O等待状态,并频繁进行上下文切换。利用NIO引入的Selector机制,可以提升程序的并发效率,改善这种状况。

伪代码

public class NioTest {  
    static public void main( String args[] ) throws Exception {  
        FileInputStream fin = new FileInputStream("D:\\test.txt");  
        // 获取通道  
        FileChannel fc = fin.getChannel();  
        // 创建缓冲区  
        ByteBuffer buffer = ByteBuffer.allocate(1024);  
        // 读取数据到缓冲区  
        fc.read(buffer);  
        buffer.flip();  
        while (buffer.remaining()>0) {  
            byte b = buffer.get();  
            System.out.print(((char)b));  
        }  
        fin.close();  
    }  
}

优化锁层面

在并发场景中,频繁使用锁是很常见的情况。然而,锁引发竞争,而竞争又会耗费大量资源。那么,在Java代码中,如何优化锁呢?我们可以考虑以下几个方面:

数据传输压缩

在数据传输之前,压缩数据是一种优化方式,可以减少网络传输的数据量,提升传输速度。接收端可解压数据,还原传输内容。压缩后的数据能节省存储介质(如磁盘或内存)空间和网络带宽,从而降低成本。然而,压缩并非无成本之举。数据压缩需要大量CPU计算,并且根据压缩算法的不同,计算复杂度和压缩比都有显著差异。通常需要根据业务情景选择合适的压缩算法。

缓存计算结果

对于相同的用户请求,若每次都重复查询数据库、重复计算,将浪费大量时间和资源。将计算结果缓存至本地内存或使用分布式缓存,可节约宝贵的CPU计算资源,减少数据库重复查询或磁盘I/O。将原本需要磁头物理转动的操作转化为内存中的电子运动,提高响应速度。同时,快速释放线程也提升了应用的吞吐能力。

来源:码上遇见你内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯