文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

一文带您快速入门Kafka

2024-11-30 12:05

关注

审校 | 重楼

目标

  1. 了解 Kafka 的重要概念
  2. 搭建 Kafka 服务端
  3. 使用SpringBoot 实现简单的 Demo

1 了解 Kafka 的重要概念

Kafka 是使用 Scala 语言开发的一个多分区、多副本且基于 ZooKeeper 协调的分布式消息系统。目前,它的定位是一个分布式流式处理平台。

Kafka 在我们工作中最常扮演的三个角色:

Kafka 和传统的消息中间件一样具有系统解耦、冗余存储、流量削峰、异步通信等功能。

Kafka 会将消息持久化到磁盘,并且有多副本机制,有效降低了数据丢失的风险。有时,我们也可以使用它来存储数据,只需要把对应的数据保留策略设置成为“永久”即可。

Kafka 不仅为很多流式处理框架(如:Storm、Spark、Flink 等)提供了可靠的数据来源,还提供了一个完整的流式处理类库。

1.1 基本概念

上图(图出自于《深入理解Kafka核心设计与实践原理》)体现了 Kafka 的整体架构,Producer 发送消息,Kafka 将元数据存储在 ZK 中并交由ZK 管理,Consumer 通过拉模式获取消息。

生产者,消息的投递方,负责创建消息并投递到 Kafka 中。

Kafka 服务实例

消费者,处理消息的一方

上面的概念都是物理层面上的,但是在实际使用过程中还有很多逻辑方面的定义,这些概念也是需要了解的。如果不了解,就算勉强写出了代码,但是自己还是一脸懵不知道自己都定义了什么,它们都有什么意义,估计离生产故障就不远了。

接下来我们再去了解三个重要的逻辑概念:

生产者创建消息是要发送给特定的主题的,而消费者拉取消息也是要指定主题的。消息就是通过主题来归类的。

一个Topic 可以有多个 Patition,而一个 Partition 只属于一个 Topic。同一个 Topic 下,不同 Partition 存储的消息是不同的。

Kafka 的消息是可以持久化并反复消费的,这是因为在每个分区中,当有消息写入就会像追加日志那样顺序写入(顺序IO的写入性能是十分好的),通过Offset 来记录对应消息所在的位置。因此,Offset 是消息在 Partition 中的唯一标识,并且能看出同一个 Partition 内的消息的先后顺序,我们称之为 “Kafka 保证消息在分区内是有序的”。

为了更好,更直观体现上面三者的关系,我们先一起看下图(图出自于《深入理解Kafka核心设计与实践原理》)

该图展示了一个拥有4个 Partition 的 Topic,而分区里面的阿拉伯数字就是 Offset(也表示着一条消息),虚线部分代表新消息可以插入的位置。每条消息在发送到 Broker 之前,会先计算当前消息应该发送到哪个 Partition。因此,只要我们设置合理,消息可以均匀地分配在不同的 Partition 上,当发现请求数量激增时,我们也可以考虑通过适当增加 Partition(Broker 也要增加)的方式,从而降低每个 Broker 的 I/O 压力。

另外,为了降低消息丢失的风险,Kafka 为 Partition 引进了多副本(Replica)机制,通过增加副本数量来提高容灾能力。副本之间采用的是“一主多从”的设计,其中 Leader 负责读写请求,Follower 则仅负责同步 Leader 的消息(这种设计方式,大家应该要意识到会存在同步滞后的问题),并且副本处于不同的 Broker 中,当 Leader 出现故障(一般是因为其所在的 Broker 出现故障导致的)时,就从 Follower 中重新选举出新的 Leader 提供服务。当选出新的 Leader 并恢复服务后,Consumer 可以通过之前自己保存的 Offset 来继续拉取消息消费。

结合到目前为止我们所知道的知识点,一起看下 4 个 Broker 的 Kafka 集群中,某一个 Topic 有三个 Partition,其副本因子为 3(副本因子为3就是每个 Partition 有 3 个副本,一个 Leader,两个 Follower)的架构图(图出自于《深入理解Kafka核心设计与实践原理》)。

1.2 Message 与 Partition

在 1.1 小节中,我们已经知道一条消息只会存在一个 Partition中(只管 Leader,不管 Follower),而 Offset 则是消息在 Partition 中的唯一标识。而在本章节,我们将一起更深入地了解消息与 Partition 的关系,还有副本间同步数据所衍生的一些概念。

上面有提到 Kafka 的多副本机制是 Leader 提供读写,而 Flower 是需要同步 Leader 的数据的,那么具体是怎样的呢?请看下图(单主题单分区3副本):

当Producer 不断往 Leader 写入消息时,Flower 会不断去 Leader 拉取消息,但是每台机器的性能会有出入,所以同步也有差异,正如上图这般。对于 Consumer 而言,只有 HW 之前的消息是可见可拉取消费的,这样做有个好处就是当发生故障转移时,Consumer 的 Offset 也不会发生数组越界的问题。这种做法是 Kafka 权衡利弊后给出的数据可靠性性能平衡的方案,即不采取同步复制(性能差,对于高并发场景是灾难般的设计),也不采取异步复制(完全异步,数据丢失问题突出)。

当然,对于Producer 而言就是消息丢失了,有时我们需要确保消息百分百投递,这样不就有问题了吗?不急,Kafka 可以在 Producer 的配置上配置 acks=-1 + min.insync.replicas=n(n 大于 1),这样配置后,只有消息被写入所有副本后,Kafka 服务端才会返回 ack 给 Producer。

下面来梳理下上面提及的几个概念:

它标识了Consumer 可以拉取消息的最高水位,客户端拉取的 Offset 必须小于 HW。

这个标记位标识下一条写入的消息应该存放的位置。

所有副本的统称

与Leader 保持一定程度同步的 Flower 集合。这个一定程度指的是在可容忍滞后范围内,这个可容忍范围可以通过配置修改。

同步滞后超过了容忍范围的Flower 集合。

2 搭建 Kafka 服务端

这里仅以单节点为例,不配置集群。

2.1 安装 ZooKeeper

在第一章节,我们知道 Kafka 会将元数据交由 ZK 管理,所以我们要先安装好 ZK。

1.首先检查自己的Linux 是否安装好了 yum 工具

rpm -qa|grep yum

使用 yum 安装好 wget

2.下载 ZK

wget https://archive.apache.org/dist/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar.gz

3.解压

tar -zxvf zookeeper-3.4.6.tar.gz

4.为ZK 创建存放数据和日志的文件夹


mkdir data 
mkdir logs

5.修改ZK 配置文件

cd conf
cp zoo_sample.cfg zoo.cfg

vi zoo.cfg

修改配置内容具体如下:

# ZooKeeper 服务器心跳时间,单位:毫秒
tickTime=2000
# 投票选举新 Leader 的初始化时间
initLimit=10
# Leader 与 Flower 心跳检测最大容忍时间,响应超过 syncLimit*tickTime,就剔除 Flower
syncLimit=5
# 存放数据的文件夹
dataDir=/root/zookeeper-3.4.6/data
# 存放日志的文件夹
dataLogDir=/root/zookeeper-3.4.6/logs
# ZooKeeper提供给接入客户端的连接端口
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature

接着,到 /root/zookeeper-3.4.6/data 创建文件 myid(如果部署的是集群,那么这个 myid 必需唯一,不能重复)。

cat > myid
vi myid

具体如下:

6.配置环境变量

vi /etc/profile
 export ZOOKEEPER_HOME=/root/zookeeper-3.4.6
export PATH=$PATH:$ZOOKEEPER_HOME/bin

再执行 source /etc/profile

至此,ZooKeeper 已经配置好了,我们可以启动看下是否有问题。

2.2 安装 Kafka

1.官网下载安装包

2.使用 psftp 上传到服务器

# put dir remoteDir
put D:\downloads\kafka_2.13-3.5.0.tgz /root/kafka_2.13-3.5.0.tgz

3.解压


tar -zxvf kafka_2.13-3.5.0.tgz

4.修改配置


cd kafka_2.13-3.5.0cd config/

 由于 server.properties 比较大,就不全部贴上来了,只贴我修改的部分:

# 是Broker的标识,因此在集群中必需唯一
broker.id=0
# Broker 对外服务地址(我这里vmware的ip是192.168.226.140)
listeners=PLAINTEXT://192.168.226.140:9092
# 实际工作中,会分内网外网,当有需要提供给外部客户端使用时,我们一般 listeners 配置内网供 Broker 之间通信使用,而 advertised.listeners 配置走外网给接入的客户端使用
#advertised.listeners=PLAINTEXT://your.host.name:9092
# 存放消息日志文件地址
log.dirs=/root/kafka_2.13-3.5.0/logs
# ZK 的访问路径,我这里因为 ZK 和 Kafka 放在了同一个服务器上,所以就使用了 localhost
zookeeper.connect=localhost:2181

5.修改环境变量

vi /etc/profile
 export KAFKA_HOME=/root/kafka_2.13-3.5.0
export PATH=$PATH:$KAFKA_HOME/bin

再执行 source /etc/profile

6.进入bin目录,启动 Broker

kafka-server-start.sh ../config/server.properties &

ps -ef|grep kafka 看下进程,但是是否已经可以使用,要通过发送消息和消费消息来验证。

3 使用 Spring Boot 实现简单的 Demo

下面是示例代码:

pom.xml



    4.0.0
    
        org.springframework.boot
        spring-boot-starter-parent
        
        2.7.12
         
    
    com.example.czl
    kafka
    0.0.1-SNAPSHOT
    springboot-kafka
    spring boot集成kafka demo
    
        1.8
        3.5.3.1
        2.3
        1.18.26
        31.1-jre
    
    
        
            org.springframework.boot
            spring-boot-starter-web
        
        
            org.springframework.kafka
            spring-kafka
        

        
            com.mysql
            mysql-connector-j
            runtime
        
        
            org.springframework.boot
            spring-boot-starter-test
            test
        
        
            org.springframework.kafka
            spring-kafka-test
            test
            
                
                    scala-library
                    org.scala-lang
                
                
                    scala-reflect
                    org.scala-lang
                
            
        

        
        
            com.baomidou
            mybatis-plus-boot-starter
            ${mybatis-plus.version}
        
        
            com.baomidou
            mybatis-plus-generator
            ${mybatis-plus.version}
        
        
            org.apache.velocity
            velocity-engine-core
            ${velocity-engine-core.version}
        

        
            org.projectlombok
            lombok
            ${lombok.version}
        

        
            com.google.guava
            guava
            ${guava.version}
        
    

    
    

    
        
            
                org.springframework.boot
                spring-boot-maven-plugin
            
        
    


application.yml

spring:
  application:
    name: spring-boot-kafka
  profiles:
    active: dev

server:
  port: 8080

application-dev.yml

spring:
  datasource:
    url: "jdbc:mysql:/***?useSSL=false&useUnicode=true&characterEncoding=utf8&ApplicationName=spring-boot-demo&serverTimezone=UTC&allowMultiQueries=true"
    username: "***"
    password: "***"
  kafka:
    bootstrap-servers: "192.168.226.140:9092" # 访问Kafka服务端的地址
    consumer:
      group-id: ${spring.application.name}-${spring.profiles.active} # 一条消息只会被订阅了该主题的同一个分组内的一个消费者消费

mybatis-plus:
  configuration:
    # 打印sql
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl

logback.xml



    
    

    
    
        
            %d{yyyy-MM-dd HH:mm:ss.SSS} [%t] %-5level %logger{36}\(%L\) - [%X{traceId}] %msg%n
        
        
        
            ${LOG_PATH_HOME}/log.%d{yyyy-MM-dd}.%i.log
            200MB
        
    

    
    
        
            %d{yyyy-MM-dd HH:mm:ss.SSS} [%t] %-5level %logger{36}\(%L\) - [%X{traceId}] %msg%n
        
    

    
    
    
    
        
        
    

ProducerDemo

import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.stereotype.Component;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;


@Slf4j
@Component
@RequiredArgsConstructor
public class ProducerDemo {
    private final KafkaTemplate kafkaTemplate;

    
    public void send(String topic, String msg, ListenableFutureCallback> callback) {
        log.info("发送Kafka消息 - topic : {}, msg : {}", topic, msg);
        ListenableFuture> future = kafkaTemplate.send(topic, msg);
        if (null != callback) {
            future.addCallback(callback);
        }
    }
}

ConsumerDemo

package com.example.czl.kafka.kafka.producer.consumer;

import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;


@Slf4j
@Component
@RequiredArgsConstructor
public class ConsumerDemo {
    @KafkaListener(topics = "test-topic-1")
    public void receivingMsg(String msg) {
        log.info("接收到Kafka消息 - msg : {}", msg);
    }
}

TestController

package com.example.czl.kafka.controller;

import com.example.czl.kafka.kafka.producer.ProducerDemo;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;


@Slf4j
@RestController
@RequiredArgsConstructor
@RequestMapping("/test")
public class TestController {
    private final ProducerDemo producerDemo;

    @GetMapping("/send/kafka_msg")
    public Long sendMsg(String msg) {
        log.info("测试发送kafka消息 - msg : {}", msg);
        producerDemo.send("test-topic-1", msg, null);
        return System.currentTimeMillis();
    }
}

postman请求测试如下:

控制台信息如下:

作者介绍

蔡柱梁,51CTO社区编辑,从事Java后端开发8年,做过传统项目广电BOSS系统,后投身互联网电商,负责过订单,TMS,中间件等。

来源:51CTO内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯