文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Robusta KRR - 一个优化 Kubernetes 的资源分配工具

2024-11-30 13:39

关注

Robusta KRR(Kubernetes Resource Recommender)是一个用于优化 Kubernetes 集群中资源分配的命令行工具,它从 Prometheus 收集 pod 使用数据,并建议 CPU 和内存的 requests 和 limits 值,这可以大大降低成本并提高性能。

特征

根据 Sysdig 最近的一项研究(https://sysdig.com/blog/millions-wasted-kubernetes/),平均而言,Kubernetes 集群有:

通过使用 KRR 调整容器大小,你可以平均节省 69% 的云成本。

如果你使用 Robusta SaaS,从 v0.10.15 开始回集成 KRR,你可以查看所有建议(也包括以前的建议),按集群、命名空间或名称过滤和排序它们。

工作原理

指标收集

Robusta KRR 使用以下 Prometheus 查询来收集使用数据:

算法

默认情况下,KRR 使用一个简单的策略来计算资源推荐。它的计算方法如下(确切的数字可以在 CLI 参数中自定义):

安装使用

MacOS/Linux 用户可以使用 brew 进行一键安装:

brew tap robusta-dev/homebrew-krr
brew install krr

安装完成后可以执行下面的命令来检查是否安装成功:

krr --help # 第一次可能会花较长时间

如果想要手动进行安装,则首先确保在你的机器上安装了 Python 3.9 或以上版本。然后 Clone 代码:

git clone https://github.com/robusta-dev/krr
cd krr

安装依赖:

pip install -r requirements.txt

最后,运行下面的命令来运行工具:

python krr.py --help

请注意,使用源代码需要您作为 python 脚本运行,当使用 brew 安装时允许运行 krr。以上所有示例都将运行命令显示为 krr ...,如果您使用的是手动安装,请将其替换为 python krr.py ...。

安装完成后就可以来使用 KRR 工具了,比如可以运行一个简单的策略:

krr simple

如果你只需要特定的命名空间(default 和 ingress-nginx):

krr simple -n default -n ingress-nginx

默认情况下,krr 将在当前上下文中运行,如果你想在不同的上下文中运行它:

krr simple -c my-cluster-1 -c my-cluster-2

如果想获得 JSON 格式的输出(需要 --logtostderr,这样就不会将日志转到结果文件):

krr simple --logtostderr -f json > result.json

如果你想获得 YAML 格式的输出:

krr simple --logtostderr -f yaml > result.yaml

如果您想查看其他调试日志:

krr simple -v

关于策略设置的更多信息,可以通过以下方式找到:

krr simple --help

默认情况下,KRR 将尝试通过扫描下面的这些标签来自动发现正在运行的 Prometheus:

"app=kube-prometheus-stack-prometheus"
"app=prometheus,compnotallow=server"
"app=prometheus-server"
"app=prometheus-operator-prometheus"
"app=prometheus-msteams"
"app=rancher-monitoring-prometheus"
"app=prometheus-prometheus"

如果这些标签都没有找到 Prometheus,则将收到错误消息,那么就必须显式传递 url 了(使用 -p 标志)。

如果你的 prometheus 没有自动连接,我们可以使用 kubectl port-forward 手动转发 Prometheus。

例如有一个名为 kube-prometheus-st-prometheus-0 的 Prometheus Pod,则我们可以下面的命令对其进行端口转发:

kubectl port-forward pod/kube-prometheus-st-prometheus-0 9090

然后,打开另一个终端并在其中运行 krr,给出一个显式的 prometheus url:

krr simple -p http://127.0.0.1:9090

此外我们还可以根据自己的需求来创建自定义的策略,比如下面的代码就是创建一个自定义的策略:

# This is an example on how to create your own custom strategy
import pydantic as pd
import robusta_krr
from robusta_krr.api.models import HistoryData, K8sObjectData, ResourceRecommendation, ResourceType, RunResult
from robusta_krr.api.strategies import BaseStrategy, StrategySettings
# Providing description to the settings will make it available in the CLI help
class CustomStrategySettings(StrategySettings):
    param_1: float = pd.Field(99, gt=0, descriptinotallow="First example parameter")
    param_2: float = pd.Field(105_000, gt=0, descriptinotallow="Second example parameter")
class CustomStrategy(BaseStrategy[CustomStrategySettings]):
    """
    A custom strategy that uses the provided parameters for CPU and memory.
    Made only in order to demonstrate how to create a custom strategy.
    """
    def run(self, history_data: HistoryData, object_data: K8sObjectData) -> RunResult:
        return {
            ResourceType.CPU: ResourceRecommendation(request=self.settings.param_1, limit=None),
            ResourceType.Memory: ResourceRecommendation(request=self.settings.param_2, limit=self.settings.param_2),
        }
# Running this file will register the strategy and make it available to the CLI
# Run it as `python ./custom_strategy.py my_strategy`
if __name__ == "__main__":
    robusta_krr.run()

GitHub 地址:https://github.com/robusta-dev/krr

来源:k8s技术圈内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯