文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Transformer后继有模!MSRA提出全新大模型基础架构:推理速度8倍提升,内存占用减少70%

2024-11-30 11:02

关注

微软大模型新架构,正式向Transformer发起挑战!

论文明晃晃地写道:

Retentive Network(RetNet):大模型领域Transformer的继任者。

图片

论文提出新的Retention机制来代替Attention。来自微软亚研院和清华的研究人员,毫不讳言“野心”,大胆放话:

RetNet实现了良好的扩展结果、并行训练、低成本部署和高效推理。

这些特性使这一基础架构,成为大语言模型中Transformer的有力继承者。

而实验数据也显示,在语言建模任务上:

并且当模型大小大于一定规模时,RetNet表现会优于Transformer。

图片

Transformer果真“后继有模”了?具体详情,一起来看。

解决“不可能三角”

Transformer在大语言模型中的重要性毋庸置疑。无论是OpenAI的GPT系列,还是谷歌的PaLM、Meta的LLaMA,都是基于Transformer打造。

但Transformer也并非完美无缺:其并行处理机制是以低效推理为代价的,每个步骤的复杂度为O(N);Transformer是内存密集型模型,序列越长,占用的内存越多。

在此之前,大家也不是没想过继续改进Transformer。但主要的几种研究方向都有些顾此失彼:

线性attention可以降低推理成本,但性能较差;

循环神经网络则无法进行并行训练。

也就是说,这些神经网络架构面前摆着一个“不可能三角”,三个角代表的分别是:并行训练、低成本推理和良好的扩展性能。

图片

RetNet的研究人员想做的,就是化不可能为可能。

具体而言,RetNet在Transformer的基础上,使用多尺度保持(retention)机制替代了标准的自注意力机制

与标准自注意力机制相比,保持机制有几大特点:

引入位置相关的指数衰减项取代softmax,简化了计算,同时使前步的信息以衰减的形式保留下来。

引入复数空间表达位置信息,取代绝对或相对位置编码,容易转换为递归形式。

另外,保持机制使用多尺度的衰减率,增加了模型的表达能力,并利用GroupNorm的缩放不变性来提高retention层的数值精度。

图片

△RetNet的双重表示

每个RetNet块包含两个模块:多尺度保持(MSR)模块和前馈网络(FFN)模块。

保持机制支持以三种形式表示序列:

其中,并行表示使RetNet可以像Transformer一样高效地利用GPU进行并行训练。

递归表示实现了O(1)的推理复杂度,降低了内存占用和延迟。

分块递归则可以更高效地处理长序列。

这样一来,RetNet就使得“不可能三角”成为可能。以下为RetNet与其他基础架构的对比结果:

在语言建模任务上的实验结果,进一步证明了RetNet的有效性。

结果显示,RetNet可以达到与Transformer相似的困惑度(PPL,评价语言模型好坏的指标,越小越好)

同时,在模型参数为70亿、输入序列长度为8k的情况下,RetNet的推理速度能达到Transformer的8.4倍,内存占用减少70%

在训练过程中,RetNet在内存节省和加速效果方面,也比标准Transformer+FlashAttention表现更好,分别达到25-50%7倍

值得一提的是,RetNet的推理成本与序列长度无关,推理延迟对批量大小不敏感,允许高吞吐量。

图片

另外,当模型参数规模大于20亿时,RetNet的表现会优于Transformer。

研究团队

RetNet的研究团队,来自微软亚研院和清华大学。

共同一作为孙宇涛和董力。

孙宇涛,清华大学计算机系本科,现在在微软亚研院实习。

董力,微软亚研院研究员。他也是此前引发大量关注的“能记住10亿token的Transformer”的论文作者之一。

RetNet论文的通讯作者是韦福如。他是微软亚洲研究院全球研究合伙人,10亿token Transformer亦是来自他的研究团队。

论文地址:https://arxiv.org/abs/2307.08621

来源:量子位内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯