文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python人工智能tensorflow常用激活函数Activation Functions

2024-04-02 19:55

关注

前言

激活函数在机器学习中常常用在神经网络隐含层节点与神经网络的输出层节点上,激活函数的作用是赋予神经网络更多的非线性因素,如果不用激励函数,输出都是输入的线性组合,这种情况与最原始的感知机相当,网络的逼近能力相当有限。如果能够引入恰当的非线性函数作为激活函数,这样神经网络逼近能力就能够更加强大。

哦豁,激活函数那么厉害,那常见的激活函数有什么呢?感觉还挺多的。

常见的激活函数种类及其图像

1 sigmoid(logsig)函数

特点:sigmoid函数函数在不同的地方表达方式不同,常用的名称就是sigmoid和logsig,它能够把输入的连续实值变换为0和1之间的输出,如果输入是特别大的负数,则输出为0,如果输入是特别大的正数,则输出为1。

缺点:

其计算公式为:

其图像如下所示。

2 tanh函数

特点:它能够把输入的连续实值变换为-1和1之间的输出,如果输入是特别大的负数,则输出为-1,如果输入是特别大的正数,则输出为1;

解决了Sigmoid函数的不是0均值的问题。

缺点:梯度消失的问题和幂运算的问题仍然存在。

其计算公式为:

其图像如下所示。

3 relu函数

特点:解决了梯度消失的问题;计算速度非常快,只需要判断输入是否大于0;

收敛速度远快于sigmoid和tanh两个函数。

缺点:不是0均值。

其计算公式为:

其图像如下所示

4 softplus函数

特点:softplus函数相当于平滑版的relu函数。

缺点:不是0均值。

其计算公式为:

其图像如下所示(与relu函数对比)。

tensorflow中损失函数的表达

1 sigmoid(logsig)函数

tf.nn.sigmoid(x, name=None)

2 tanh函数

tf.nn.tanh(x, name=None)

3 relu函数

tf.nn.relu(features, name=None)
tf.nn.relu6(features, name=None)
#relu6相对于普通relu更容易学习到稀疏特征。

4 softplus函数

tf.nn.softplus(features, name=None)

以上就是python人工智能tensorflow常用激活函数Activation Functions的详细内容,更多关于tensorflow激活函数的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯