文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python中的Pytorch建模流程汇总

2024-04-02 19:55

关注

本节内容学习帮助大家梳理神经网络训练的架构。

一般我们训练神经网络有以下步骤:

推荐文章:

python实现可视化大屏

分享4款 Python 自动数据分析神器

以下,我就将上述步骤使用代码进行注释讲解:

1 导入库

import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
from torch.utils.data import DataLoader, DataLoader
import torchvision
import torchvision.transforms as transforms

2 设置初始值

# 学习率
lr = 0.15
# 优化算法参数
gamma = 0.8
# 每次小批次训练个数
bs = 128
# 整体数据循环次数
epochs = 10

3 导入并制作数据集

本次我们使用FashionMNIST图像数据集,每个图像是一个28*28的像素数组,共有10个衣物类别,比如连衣裙、运动鞋、包等。

注:初次运行下载需要等待较长时间。

# 导入数据集
mnist = torchvision.datasets.FashionMNIST(
    root = './Datastes'
    , train = True
    , download = True
    , transform = transforms.ToTensor())
    
# 制作数据集
batchdata = DataLoader(mnist
                       , batch_size = bs
                       , shuffle = True
                       , drop_last = False)

我们可以对数据进行检查:

for x, y in batchdata:
    print(x.shape)
    print(y.shape)
    break

# torch.Size([128, 1, 28, 28])
# torch.Size([128])

可以看到一个batch中有128个样本,每个样本的维度是1*28*28。

之后我们确定模型的输入维度与输出维度:

# 输入的维度
input_ = mnist.data[0].numel()
# 784

# 输出的维度
output_ = len(mnist.targets.unique())
# 10

4 定义神经网络架构

先使用一个128个神经元的全连接层,然后用relu激活函数,再将其结果映射到标签的维度,并使用softmax进行激活。

# 定义神经网络架构
class Model(nn.Module):
    def __init__(self, in_features, out_features):
        super().__init__()
        self.linear1 = nn.Linear(in_features, 128, bias = True)
        self.output = nn.Linear(128, out_features, bias = True)
    
    def forward(self, x):
        x = x.view(-1, 28*28)
        sigma1 = torch.relu(self.linear1(x))
        sigma2 = F.log_softmax(self.output(sigma1), dim = -1)
        return sigma2

5 定义训练流程

在实际应用中,我们一般会将训练模型部分封装成一个函数,而这个函数可以继续细分为以下几步:

在此六步核心操作的基础上,我们通常还需要对模型的训练进度、损失值与准确度进行监视。

注释代码如下:

# 封装训练模型的函数
def fit(net, batchdata, lr, gamma, epochs):
# 参数:模型架构、数据、学习率、优化算法参数、遍历数据次数

    # 5.1 定义损失函数
    criterion = nn.NLLLoss()
    # 5.1 定义优化算法
    opt = optim.SGD(net.parameters(), lr = lr, momentum = gamma)
    
    # 监视进度:循环之前,一个样本都没有看过
    samples = 0
    # 监视准确度:循环之前,预测正确的个数为0
    corrects = 0
    
    # 全数据训练几次
    for epoch in range(epochs):
        # 对每个batch进行训练
        for batch_idx, (x, y) in enumerate(batchdata):
            # 保险起见,将标签转为1维,与样本对齐
            y = y.view(x.shape[0])
            
            # 5.2 正向传播
            sigma = net.forward(x)
            # 5.3 计算损失
            loss = criterion(sigma, y)
            # 5.4 反向传播
            loss.backward()
            # 5.5 更新梯度
            opt.step()
            # 5.6 梯度清零
            opt.zero_grad()
            
            # 监视进度:每训练一个batch,模型见过的数据就会增加x.shape[0]
            samples += x.shape[0]
            
            # 求解准确度:全部判断正确的样本量/已经看过的总样本量
            # 得到预测标签
            yhat = torch.max(sigma, -1)[1]
            # 将正确的加起来
            corrects += torch.sum(yhat == y)
            
            # 每200个batch和最后结束时,打印模型的进度
            if (batch_idx + 1) % 200 == 0 or batch_idx == (len(batchdata) - 1):
                # 监督模型进度
                print("Epoch{}:[{}/{} {: .0f}%], Loss:{:.6f}, Accuracy:{:.6f}".format(
                    epoch + 1
                    , samples
                    , epochs*len(batchdata.dataset)
                    , 100*samples/(epochs*len(batchdata.dataset))
                    , loss.data.item()
                    , float(100.0*corrects/samples)))

6 训练模型

# 设置随机种子
torch.manual_seed(51)

# 实例化模型
net = Model(input_, output_)

# 训练模型
fit(net, batchdata, lr, gamma, epochs)
# Epoch1:[25600/600000  4%], Loss:0.524430, Accuracy:69.570312
# Epoch1:[51200/600000  9%], Loss:0.363422, Accuracy:74.984375
# ......
# Epoch10:[600000/600000  100%], Loss:0.284664, Accuracy:85.771835

现在我们已经用Pytorch训练了最基础的神经网络,并且可以查看其训练成果。大家可以将代码复制进行运行!

虽然没有用到复杂的模型,但是我们在每次建模时的基本思想都是一致的

到此这篇关于python中的Pytorch建模流程汇总的文章就介绍到这了,更多相关Pytorch建模流程内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯