文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

关于keras中卷积层Conv2D的学习记录

2023-02-21 18:01

关注

keras中卷积层Conv2D的学习

关于卷积的具体操作不细讲,本文只是自己太懒了不想记手写笔记。

由于自己接触到的都是图像

处理相关的工作,因此,在这里只介绍2D卷积。

keras.layers.convolutional.Conv2D(filters,kernel_size,strides(1,1), 
                                  padding='valid',
                                  data_format=None,
                                  dilation_rate=(1,1),
                                  activation=None,
                                  use_bias=True,
                                  kernel_initializer='glorot_uniform',
                                  bias_initializer='zeros',
                                  kernel_regularizer=None,
                                  bias_regularizer=None,
                                  activity_regularizer=None,
                                  kernel_constraint=None,
                                  bias_constraint=None)

此操作将二维向量进行卷积,当使用该层作为第一层时,应提供input_shape参数。

参数

keras中conv2d,conv2dTranspose的Padding详解

conv2d和conv2dTranspose属于最常用的层,但在keras的实现中关于padding的部分有点模糊,周末趁着空闲做了一些尝试,来实验padding的valid和same参数在实际过程中如何操作的。

conv2D演示代码

conv2D部分

v_input = np.ones([1,5,5,1])
kernel = np.ones([3,3])
stride = 1
model = Sequential()
model.add(Conv2D(1, kernel_size=(3, 3),
                 activation='relu',
                 padding="valid" ,  # "same"
                 strides = 1, 
                 # dilation_rate = 1,
                 kernel_initializer = keras.initializers.Ones(),
                 input_shape=v_input.shape[1:]))

其中stride可以尝试多组测试

padding在valid 和 same 间切换测试

Conv2d演示结论

padding 为valid则不进行填充, 根据stride的滑动大小来做平移, 则:

output_shape = ceil( (input_shape - (kernel_size - 1)) / stride )

如果是same模式则 会进行左右上下的补齐, 其中左,上依次补齐 flood (kernel_size -1 ) / 2 , 右下补齐ceil (( kernel_size - 1) /2 ) ,补齐后进行的操作就是类似valid下的滑动卷积

output_shape = ceil (input_shape / stride)

CONV2Dtranspose演示代码

v_input = np.ones([1,5,5,1])
kernel = np.ones([3,3])
stride = 1
model = Sequential()
model.add(Conv2DTranspose(1, kernel_size=(3, 3),
                 activation='relu',
                 padding="valid" ,  # "same"
                 strides = 1, 
                 # dilation_rate = 1,
                 kernel_initializer = keras.initializers.Ones(),
                 input_shape=v_input.shape[1:]))

如果padding的设置为valid则,保持最小相交的原则上下左右均填充kernel_size大小,如果stride设置为非1,起实际的作用和dilation_rate一样均是在矩阵中进行填充(实际滑动是永远都是1) 具体填充出来的矩阵大小是 (input_size -1) * stride + 1 + 2 * (kernel_size - 1)

之后就是按照这个矩阵做着类似conv2d valid的卷积 则:

output_shape = (input_size -1) * stride + 1 + 2 * (kernel_size - 1) - (kernel_size -1) = (input_size - 1) * stride + kernel_size

在这里插入图片描述

如果padding为same的话则output_shape = input_shape * stride

其中原始矩阵左上padding = ceil (( kernel_size ) /2 )  右下补齐 flood (( kernel_size ) /2 )  这里conv2d

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯