文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用机器学习对图片进行分类

2024-12-01 17:02

关注

时装数据集

在这里将使用60000张图片进行训练,使用10000张图片进行评估,可以直接使用Keras进行加载。

fashion_mnist = tf.keras.datasets.fashion_mnist(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

所有的图片可分为10个种类:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

数据预处理:

在将数据送入到神经网络训练之前,需要对数据进行预处理,查看一张训练的图片,像素值的分布范围为[0, 255]

鞋子

对数据进行归一化处理:

train_images = train_images / 255.0test_images = test_images / 255.0

为了验证数据的正确性,展示前25张图片以及图片的分类:

服装

建立模型

神经网络基础模块就是层(Layer),层会从传递的数据中提取特征,这些特征对问题的解决很有帮助。

很多深度学习都是由一系列简单的层串联而成,大部分的层比如Dense,在训练过程中有可学习的参数。

model = tf.keras.Sequential([    tf.keras.layers.Flatten(input_shape=(28, 28)),    tf.keras.layers.Dense(128, activation='relu'),    tf.keras.layers.Dense(10)])

Flatten层将二维(28 x 28)的图片转化为一维的数组,这一层没有参数可以学习,仅仅只是格式化数据。

第一个Dense层有128个节点或者说神经元,第二个Dense层返回长度为10的数组,每个节点包含当前图片属于哪个分类的得分。

模型编译

模型需要进行三个设置:

  1. 损失函数 - 这个主要用于评估模型在训练过程中的准确性
  2. 优化器 - 模型如何更新
  3. 量度 - 用于监测训练和测试步骤
model.compile(optimizer='adam',              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),              metrics=['accuracy'])

填入训练数据:

model.fit(train_images, train_labels, epochs=10)

评估模型的正确性:

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)print('Test accuracy:', test_acc)

显示结果:

Test accuracy: 0.8835999965667725

训练过程输出:

1875/1875 [==============================] - 1s 523us/step - loss: 0.2379 - accuracy: 0.9110

可以看到测试数据的正确性是要略低于训练数据的正确性的,这个训练和测试的差距叫做overfitting(过拟合),过拟合发生在机器学习模型对于没有处理过的数据表现更差。

预测

模型训练之后,你可以使用它来对一些图片进行预测,添加一个Softmax层将结果转换为置信度,它更容易被理解

predictions = probability_model.predict(test_images)print(predictions[0])

可以看到第0张测试图片属于每个分类的置信度:

[4.7003473e-07 2.8711662e-09 1.8403462e-08 3.7643213e-09 2.0236126e-08 8.2177273e-04 1.0194674e-06 9.5114678e-02 2.8414237e-07 9.0406173e-01]

第9个数据的置信度最高,通过打印图片的标签也是9,说明预测正确。

随机选择一些图片输出:

置信度分布

第13张图片81%的可能性是凉鞋,说明机器学习预测错误,它应该是跑鞋。

也可以对单张图片进行预测,虽然是单张图片,但是Keras仍然需要数组进行传递,将图片添加到集合中。

img = (np.expand_dims(img, 0))

进行预测:

predictions_single = probability_model.predict(img)

总结

以上就是建立神经网络的简单过程,分为数据处理、模型的训练、预测等几个步骤。

来源:今日头条内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯