文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

提示工程中的十个设计模式

2024-11-30 00:05

关注

而设计模式可以理解为对常见问题的通用可重复解决方案。每个设计模式绝不是一个可以直接应用于问题的完整解决方案,而是一个可以用来更好地构建应用最佳实践的解决方案的模板或框架。设计模式在面向对象编程领域应用广泛,在本文中,老码农尝试总结了提示工程中的10个常见设计模式。

1. 人物角色模式

人物角色模式是一种通过向语言模型注入特定的人格或说话的语气来实现。通过定义不同的角色,我们能够控制生成文本的风格和方式,以适应各种不同的应用场景。以下是一些示例:

通过人物角色模式,语言模型能够以更加灵活、个性化的方式生成文本,从而提高与用户的互动体验,并在各种应用场景中发挥更大的作用。

2. 食谱模式

类似于烹饪食谱,食谱模式提供了一种逐步指导大模型生成文本的方法。这种模式对于需要详细和连续指令的任务非常有价值,例如教程、过程文档或制作装配指南。以下是部分示例:

通过这种模式,大模型可以提供连贯性和结构性的文本输出,使读者能够轻松理解和实践其中的指导,从而在各种应用场景中实现更高效的工作和学习。

3. 反向查询模式

在反向查询模式中,大模型被要求以一种特殊的方式工作:首先,它接收一个输出或响应作为启动条件,然后被要求生成最适合的查询或输入,以产生特定的输出。这种技术不仅仅可以用于问答场景,还可以应用于各种其他情境中。以下是一些示例:

通过反向查询模式,大模型能够根据特定的输出生成相应的查询或输入,从而更好地满足用户的需求,并提高系统的性能和用户体验。

4. 输出自动化模式

输出自动化模式是一种利用指示词来规范化大模型生成结构化或格式化输出的方式,以实现重复任务的自动化。举例来说,它可以用于以下情形:

输出自动化模式特别是在涉及数据分析、内容生成和软件开发等领域中,它能够极大地提高工作效率和准确性。

5. 思维链模式

思维链(CoT)模式是一种指导大模型按照特定的推理或论证路径进行生成的技术。这种模式对于创作有说服力的文章、评论或者复杂的讨论非常有价值,因为逻辑流是构建其可信度和可理解性的关键要素。以下是一些示例:

通过思维链模式,大模型可以按照逻辑思维的路径生成文本,使其更具有连贯性、说服力和可理解性,从而在各种领域中发挥重要作用。

6 图谱辅助模式

图谱辅助模式是一种利用已有知识来增强提示的方法,从而帮助大型语言模型生成更准确的输出结果。这种模式通过将知识图谱或领域专业知识与模型结合,以提供更多背景信息和上下文,从而改善模型的理解能力和输出质量。以下是部分示例:

通过图谱辅助模式,大模型可以利用丰富的知识资源来增强其输出的准确性和可靠性,从而在各种应用场景中发挥更大的作用。

图片

7. 事实检查模式

为了降低产生错误或误导信息的风险,事实检查模式促使大型语言模型根据可靠的外部来源或数据库验证其输出。这种模式鼓励大模型提供支持性证据来证明其答案的可信性,从而促进准确的结果。以下是一些示例:

通过事实检查模式,大模型可以提供更加可靠和准确的输出,从而增强其在各种应用场景中的可信度和实用性。

8. 反射模式

反射模式鼓励大模型以批判性的视角评估其生成的文本。这种模式促使大模型审视其输出中存在的潜在偏见或不确定性。以下是一些示例:

通过反射模式,大模型可以更加自觉地评估其输出,避免不当的言论或误导性信息,并且提供更加负责任和可信的回答。

9.问题精炼模式

问题精炼模式是一种迭代方法,其中根据语言模型的反馈不断优化输入的查询或提示。通过分析模型对不同提示的响应,开发人员可以微调查询,从而提高模型的性能。以下是一些示例:

通过问题精炼模式,开发人员可以与语言模型进行交互,不断改进模型的性能和效果,从而提供更好的用户体验和更准确的结果。

10.部分拒绝模式

有时,人工智能模型在面对复杂的查询时可能会回答“我不知道”或拒绝生成输出。为了更有效地处理这种情况,引入了“断路拒绝模式”。这种模式的目标是训练模型在面对困难或无法准确回答的情况下,能够提供有用的答复或部分答案,而不是直接拒绝。以下是一些示例:

通过该模式,人工智能模型可以更加灵活和智能地处理复杂的情况,提高其适应性和用户体验。

没有结束

提示工程的设计模式是一种强大的工具,能够更好地发挥大模型的能力。本文介绍的这些模式可以帮助提高给定大模型的整体质量。通过利用这些模式,我们可以定制特定用例的输出,识别和纠正错误,并优化提示以获得更准确和更富有见地的响应。随着人工智能技术的不断发展和新模式的涌现,提示工程仍可能是创造更可靠和更智能的人工智能会话系统的关键因素之一。

来源:喔家ArchiSelf内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯