文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python之tensorflow手把手实例讲解斑马线识别实现

2024-04-02 19:55

关注

一,斑马线的数据集

数据集的构成:

test train
zebra corssing:56 zebra corssing:168
other:54 other:164

二,代码部分

1.导包


import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt
import keras

2.数据导入


train_dir=r'C:\Users\zx\深度学习\Zebra\train'
test_dir=r'C:\Users\zx\深度学习\Zebra\test'
train_datagen = ImageDataGenerator(rescale=1/255,
                                   rotation_range=10,  #旋转
                                   horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(train_dir,
                                                    (50,50),
                                                    batch_size=1,
                                                    class_mode='binary',
                                                    shuffle=False)
test_datagen = ImageDataGenerator(rescale=1/255)
test_generator = test_datagen.flow_from_directory(test_dir,
                                                 (50,50),
                                                  batch_size=1,
                                                  class_mode='binary',
                                                  shuffle=False)

3.搭建模型

模型的建立仁者见智,可自己调节寻找更好的模型。


model = tf.keras.models.Sequential([
    # 第一层卷积,卷积核为,共16个,输入为150*150*1
    tf.keras.layers.Conv2D(16,(3,3),activation='relu',padding='same',input_shape=(50,50,3)),
    tf.keras.layers.MaxPooling2D((2,2)),
    
    # 第二层卷积,卷积核为3*3,共32个,
    tf.keras.layers.Conv2D(32,(3,3),activation='relu'),
    tf.keras.layers.MaxPooling2D((2,2)),
    
    # 第三层卷积,卷积核为3*3,共64个,
    tf.keras.layers.Conv2D(64,(3,3),activation='relu'),
    tf.keras.layers.MaxPooling2D((2,2)),
    
    # 第四层卷积,卷积核为3*3,共128个
#     tf.keras.layers.Conv2D(128,(3,3),activation='relu'),
#     tf.keras.layers.MaxPooling2D((2,2)),
    
    # 数据铺平
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(32,activation='relu'),
    tf.keras.layers.Dense(16,activation='relu'),
    tf.keras.layers.Dense(2,activation='softmax')
])
print(model.summary())
model.compile(optimize='adam',
             loss=tf.keras.losses.sparse_categorical_crossentropy,
              metrics=['acc'])

4,模型训练


history = model.fit(train_generator,
                    epochs=20,
                    verbose=1)
model.save('./Zebra.h5')

模型训练过程:

在这里插入图片描述

可以看到我们的模型在20轮的训练后acc从0.63上升到了0.96左右。

5,模型评估


model.evaluate(test_generator)

在这里插入图片描述


#可视化
plt.plot(history.history['acc'], label='accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.7, 1])
plt.legend(loc='lower right')
plt.title('acc')
plt.show()

在这里插入图片描述

6,模型预测

虽然我们的模型在训练过程中acc一度达到0.96,但测试集才是检验模型的唯一标准,在model.evaluate(test_generator)中的评分只有0.91左右,说明我们的模型已经能以很高的正确率来完成”斑马线“与“非斑马线”的二分类问题了,但我们还是要查看具体是哪些数据没有被模型正确得识别。


pred=model.predict(test_generator) #获取test集的输出
filenames = test_generator.filenames  #获取test数据的文件名

错误输出过程:


for i in range(len(filenames)):
    if filenames[i][:6]=='others':
        if np.argmax(pred[i]) != 0:
            a=filenames[i]
            plt.figure()
            print('预测错误的图片:'+a[int(a.find('s')+2):])
            print('错误识别为"zebra crossing",正确类型是"others"')
            print('预测标签为:'+str(np.argmax(pred[i]))+',真实标签为:0')
            img = plt.imread('Zebra/test/others/'+a[int(a.find('s')+2):])
            plt.imshow(img)
            plt.title(a[int(a.find('s')+2):])
            plt.grid(False)
            break
    if filenames[i][:6]=='zebra ':
        if np.argmax(pred[i]) != 1:
            b= filenames[i]
            plt.figure()
            print('预测错误的图片:'+b[int(b.find('g')+2):])
            print('错误识别为"others",正确类型是"zebra crossing"')
            print('预测标签为:'+str(np.argmax(pred[i]))+',真实标签为:1')
            img = plt.imread('Zebra/test/zebra crossing/'+b[int(b.find('g')+2):])
            plt.imshow(img)
            plt.title(b[int(b.find('g')+2):])
            plt.grid(False)
            break

在这里插入图片描述

看到这个错误样本,我猜想可能是因为斑马线的部分只占了图像的一半左右,所以预测错误了。

这里是我做预测判断的思路,本可以不这么复杂的可以用test_generator.labels来获取数据的标签,再做判断。


test_generator.labels

在这里插入图片描述

上面只输出了第一个错误的样本,所以接下来我们要看所有错误预测的样本


sum=0
for i in range(len(filenames)):
    if filenames[i][:6]=='others':
        if np.argmax(pred[i]) != 0:
            a=filenames[i]
            print('预测错误的图片:'+a[int(a.find('s')+2):]+',错误识别为"zebra crossing",正确类型是"others"')
            sum=sum+1
    if filenames[i][:6]=='zebra ':
        if np.argmax(pred[i]) != 1:
            b= filenames[i]
            print('预测错误的图片:'+b[int(b.find('g')+2):]+',错误识别为"others",正确类型是"zebra crossing"')
            sum=sum+1
print('错误率:'+str(sum/100)+'%')
print('正确率:'+str((10000-sum)/100)+'%')

在这里插入图片描述

三,分析

在构建模型时我尝试在最后一层只用一个神经元,用sigmoid激活函数,其他参数不变,在同样epochs=20的条件,也能很快收敛,达到很高的acc,测试集的评分也能在0.9左右,但是在最后输出全部错误样本的时候发现错误的样本远超过softmax,可能其中有些参数我没有根据sigmoid来调整,所以会有如此高的错误率,欢迎在评论区讨论。

到此这篇关于python之tensorflow手把手实例讲解斑马线识别实现的文章就介绍到这了,更多相关python tensorflow 斑马线识别内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯