文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

HBase-1.0.1学习笔记(四)MapReduce操作HBase

2024-04-02 19:55

关注

鲁春利的工作笔记,谁说程序员不能有文艺范?



环境:

    hadoop-2.6.0

    hbase-1.0.1

    zookeeper-3.4.6

1、Hadoop集群配置过程略;

2、Zookeeper集群配置过程略;

3、HBase集群配置过程略;

4、HBase作为输入源示例

    查看当前hbase表m_domain中的数据

[hadoop@dnode1 conf]$ hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 1.0.1, r66a93c09df3b12ff7b86c39bc8475c60e15af82d, Fri Apr 17 22:14:06 PDT 2015

hbase(main):001:0> list
TABLE 
m_domain
t_domain
2 row(s) in 0.9270 seconds

=> ["m_domain", "t_domain"]

hbase(main):002:0> scan 'm_domain'
ROW                   COLUMN+CELL 
alibaba.com_19990415_20220523      column=cf:access_server, timestamp=1440947490018, value=\xE6\x9D\xAD\xE5\xB7\x9E
alibaba.com_19990415_20220523      column=cf:exp_date, timestamp=1440947490018, value=2022\xE5\xB9\xB405\xE6\x9C\x8823\xE6\x97\xA5
alibaba.com_19990415_20220523      column=cf:ipstr, timestamp=1440947490018, value=205.204.101.42
alibaba.com_19990415_20220523      column=cf:owner, timestamp=1440947490018, value=Hangzhou Alibaba Advertising Co.
alibaba.com_19990415_20220523      column=cf:reg_date, timestamp=1440947490018, value=1999\xE5\xB9\xB404\xE6\x9C\x8815\xE6\x97\xA5
baidu.com_19991011_20151011       column=cf:access_server, timestamp=1440947489956, value=\xE5\x8C\x97\xE4\xBA\xAC
baidu.com_19991011_20151011       column=cf:exp_date, timestamp=1440947489956, value=2015\xE5\xB9\xB410\xE6\x9C\x8811\xE6\x97\xA5       
baidu.com_19991011_20151011        column=cf:ipstr, timestamp=1440947489956, value=220.181.57.217
baidu.com_19991011_20151011       column=cf:reg_date, timestamp=1440947489956, value=1999\xE5\xB9\xB410\xE6\x9C\x8811\xE6\x97\xA5
2 row(s) in 1.4560 seconds

hbase(main):003:0> quit

    实现Mapper端

package com.invic.mapreduce.hbase.source;

import java.io.IOException;
import java.util.Map;
import java.util.Map.Entry;
import java.util.NavigableMap;
import java.util.Set;

import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;


public class HBaseReaderMapper extends TableMapper<Writable, Writable> {
	private Text key = new Text();
	private Text value = new Text();
	
	@Override
	protected void setup(Context context) throws IOException, InterruptedException {
		super.setup(context);
	}
	
	@Override
	protected void map(ImmutableBytesWritable row, Result result,Context context)
			throws IOException, InterruptedException {
		// 可以明确给定family
		{
			NavigableMap<byte[], byte[]> map = result.getFamilyMap("cf".getBytes());
			Set<Entry<byte[], byte[]>> values = map.entrySet();
			for (Entry<byte[], byte[]> entry : values) {
				String columnQualifier = new String(entry.getKey());
				String cellValue = new String(entry.getValue());
				System.out.println(columnQualifier + "\t" + cellValue);
				// 
			}
		}
		
		// 存在多个列族或者不确定列族名字
		{
			String rowKey = new String(row.get());
			byte [] columnFamily = null;
			byte [] columnQualifier = null;
			byte [] cellValue = null;
			
			StringBuffer sbf = new StringBuffer(1024);
			for (Cell cell : result.listCells()) {
				columnFamily = CellUtil.cloneFamily(cell);
				columnQualifier = CellUtil.cloneQualifier(cell);
				cellValue = CellUtil.cloneValue(cell);
				
				sbf.append(Bytes.toString(columnFamily));
				sbf.append(".");
				sbf.append(Bytes.toString(columnQualifier));
				sbf.append(":");
				sbf.append(new String(cellValue, "UTF-8"));
			}
			
			key.set(rowKey);
			value.set(sbf.toString());
			context.write(key, value);
		}
	}
	
	@Override
	protected void cleanup(Context context) throws IOException, InterruptedException{
		super.cleanup(context);
	}
}

    实现MapReduce的Driver类

package com.invic.mapreduce.hbase.source;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;


public class HBaseASDataSourceDriver extends Configured implements Tool {
	
	public static void main(String[] args) throws Exception {
		// System.setProperty("hadoop.home.dir", "E:\\hadoop-2.6.0\\hadoop-2.6.0\\");
		
		int exit = ToolRunner.run(new HBaseASDataSourceDriver(), args);
		System.out.println("receive exit : " + exit);
	}

	@Override
	public int run(String[] args) throws Exception {
		Configuration conf = HBaseConfiguration.create();
		// hadoop的参数配置
		

		// hbase master
		// property "hbase.master" has been deprecated since 0.90
		// Just passing the ZK configuration makes your client auto-discover the master
		// conf.set("hbase.master", "nnode:60000");
		// zookeeper quorum
		getConf().set("hbase.zookeeper.property.clientport", "2181");
		getConf().set("hbase.zookeeper.quorum", "nnode,dnode1,dnode2");
		// 是否对Map Task启用推测执行机制
		getConf().setBoolean("mapreduce.map.speculative", false);
		// 是否对Reduce Task启用推测执行机制
		getConf().setBoolean("mapreduce.reduce.speculative", false);
		
		Job job = Job.getInstance(conf);
		job.setJobName("MyBaseReaderFromHBase");
		job.setJarByClass(HBaseASDataSourceDriver.class);
		job.setOutputFormatClass(TextOutputFormat.class);
		
		
		
		Scan scan = new Scan();
		// scan.addFamily(family);
		// scan.addColumn(family, qualifier);
		
		byte [] tableName = Bytes.toBytes("m_domain");
		
		TableMapReduceUtil.initTableMapperJob(tableName, scan, HBaseReaderMapper.class, Text.class, Text.class, job);
		
		Path path = new Path("/" + System.currentTimeMillis());
		FileOutputFormat.setOutputPath(job, path);
		
		return job.waitForCompletion(true) ? 0 : 1;
	}
	
}

    查看结果:

HBase-1.0.1学习笔记(四)MapReduce操作HBase

    

    问题记录:

    a. 通过Eclipse执行时报错,但未分析出原因

HBase-1.0.1学习笔记(四)MapReduce操作HBase    b. 放到集群环境中运行时Mapper类如果定义在Driver类中,则报错

ClassNotFound for HBaseASDataSourceDriver$HBaseReaderMapper init()

    c. zookeeper连接符总是显示连接的为127.0.0.1而非配置的zookeeper.quorum

HBase-1.0.1学习笔记(四)MapReduce操作HBase    如果zookeeper集群环境与hbase环境在不同的机器不知道是否会出现问题。

5、Hbase作为输出源示例

    文本文件内容如下:

2013-09-13 16:04:08	www.subnetc1.com	192.168.1.7	80	192.168.1.139	18863	HTTP	www.subnetc1.com/index.html
2013-09-13 16:04:08	www.subnetc2.com	192.168.1.7	80	192.168.1.159	14100	HTTP	www.subnetc2.com/index.html
2013-09-13 16:04:08	www.subnetc3.com	192.168.1.7	80	192.168.1.130	4927	HTTP	www.subnetc3.com/index.html
2013-09-13 16:04:08	www.subnetc4.com	192.168.1.7	80	192.168.1.154	39044	HTTP	www.subnetc4.com/index.html

    Map端代码:

package com.invic.mapreduce.hbase.target;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MyMapper extends Mapper<Object, Text, Text, Text> {
	@Override
	public void map(Object key, Text value,	Context context) throws IOException, InterruptedException {
		// 用来实现wordcount功能,示例程序, Mapper<Object, Text, Text, IntWritable>
		
		
		// 将多列数据写入hbase, Mapper<Object, Text, Text, Text>
		{
			String [] temps = value.toString().split("\t");
			if (null != temps && temps.length == 8) {
				Text word = new Text();
				word.set(temps[1]);
				context.write(word, value);
			}
		}
	}
}

    Reducer端代码:

package com.invic.mapreduce.hbase.target;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

public class MyReducer extends TableReducer<Text, Text, ImmutableBytesWritable> {
	@Override
	public void reduce(Text key, Iterable<Text> value, Context context) throws IOException, InterruptedException {
		// for wordcount 
		// TableReducer<Text, IntWritable, ImmutableBytesWritable>
		// Iterable<IntWritable>
		
		
		// 需要将多列写入HBase
		// TableReducer<Text, Text, ImmutableBytesWritable>
		// Iterable<Text> value
		{
			byte [] family = "cf".getBytes();
			
			Put put = new Put(key.getBytes());
			
			StringBuffer sbf = new StringBuffer();
			for (Text text : value) {
				sbf.append(text.toString());
			}
			
			put.addColumn(family, Bytes.toBytes("detail"), Bytes.toBytes(sbf.toString()));
			
			context.write(new ImmutableBytesWritable(key.getBytes()), put);
		}
	}
}

    Driver驱动类:

package com.invic.mapreduce.hbase.target;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;


public class HBaseASDataTargetDriver extends Configured implements Tool {
	private static final String TABLE_NAME = "t_inter_log";
	private static final String COLUMN_FAMILY_NAME = "cf";
	
	
	public static void main(String[] args) throws Exception {
		// for eclipse
		// System.setProperty("hadoop.home.dir", "E:\\hadoop-2.6.0\\hadoop-2.6.0\\");
		
		int exit = ToolRunner.run(new HBaseASDataTargetDriver(), args);
		System.out.println("receive exit : " + exit);
	}

	@Override
	public int run(String[] args) throws Exception {
		Configuration conf = HBaseConfiguration.create(getConf());
		// hadoop的参数配置
		conf.set("fs.defaultFS", "hdfs://cluster");
		conf.set("dfs.nameservices", "cluster");
		conf.set("dfs.ha.namenodes.cluster", "nn1,nn2");
		conf.set("dfs.namenode.rpc-address.cluster.nn1", "nnode:8020");
		conf.set("dfs.namenode.rpc-address.cluster.nn2", "dnode1:8020");
		conf.set("dfs.client.failover.proxy.provider.cluster", 
				"org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");

		// hbase master
		// property "hbase.master" has been deprecated since 0.90
		// Just passing the ZK configuration makes your client auto-discover the master
		// conf.set("hbase.master", "nnode:60000");
		// zookeeper quorum
		conf.set("hbase.zookeeper.property.clientport", "2181");
		conf.set("hbase.zookeeper.quorum", "nnode,dnode1,dnode2");
		// 是否对Map Task启用推测执行机制
		conf.setBoolean("mapreduce.map.speculative", false);
		// 是否对Reduce Task启用推测执行机制
		conf.setBoolean("mapreduce.reduce.speculative", false);
		
		
		Connection connection = ConnectionFactory.createConnection(conf);
		Admin admin = connection.getAdmin();
		TableName tableName = TableName.valueOf(TABLE_NAME);
		
		boolean exists = admin.tableExists(tableName);
		if (exists) {
			admin.disableTable(tableName);
			admin.deleteTable(tableName);
		}
		
		HTableDescriptor tableDesc = new HTableDescriptor(tableName);
		HColumnDescriptor columnDesc = new HColumnDescriptor(COLUMN_FAMILY_NAME);
		tableDesc.addFamily(columnDesc);
		
		admin.createTable(tableDesc);
		
		
		String fileName = "http_interceptor_20130913.txt";
		
		Job job = Job.getInstance(conf);
		job.setJobName("MyBaseWriterToHBase");
		job.setJarByClass(HBaseASDataTargetDriver.class);
		
		job.setMapperClass(MyMapper.class);
		
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);
		
		// 下面这句话不能加,在测试中发现加了这句话竟然报错找不到MyReducer类了。
		// job.setReducerClass(MyReducer.class);
		
		Path path = new Path(fileName);
		FileInputFormat.addInputPath(job, path);
		
		TableMapReduceUtil.initTableReducerJob(TABLE_NAME, MyReducer.class, job);
		
		// for wordcount
		// job.setOutputKeyClass(Text.class);
		// job.setOutputValueClass(IntWritable.class);
		
		// for multi columns
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);
		
		return job.waitForCompletion(true) ? 0 : 1;
	}
	
}

    未设置Map输出的key-value的类型时报错如下(wordcount的示例未报错,在Hadoop应用开发技术详解中说map端输出的key-value默认类型为:LongWritable.class和Text.class,但是wordcount示例中map端输出的key-value类型却为Text.class和IntWritable):

15/09/04 21:15:54 INFO mapreduce.Job:  map 0% reduce 0%
15/09/04 21:16:27 INFO mapreduce.Job: Task Id : attempt_1441346242717_0011_m_000000_0, Status : FAILED
Error: java.io.IOException: Type mismatch in value from map: expected org.apache.hadoop.io.IntWritable, received org.apache.hadoop.io.Text
        at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:1074)
        at org.apache.hadoop.mapred.MapTask$NewOutputCollector.write(MapTask.java:712)
        at org.apache.hadoop.mapreduce.task.TaskInputOutputContextImpl.write(TaskInputOutputContextImpl.java:89)
        at org.apache.hadoop.mapreduce.lib.map.WrappedMapper$Context.write(WrappedMapper.java:112)
        at com.invic.mapreduce.hbase.target.MyMapper.map(MyMapper.java:29)
        at com.invic.mapreduce.hbase.target.MyMapper.map(MyMapper.java:1)
        at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)
        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:784)
        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:163)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
        
# 由于出现错误时Map端为0%,所以分析问题出现在map端,且根据提示信息说明默认value应该是IntWritable,我第二次的示例与wordcount的差别主要在map端输出的value由IntWritabe->Text,设置了如下参数后问题解决。
# job.setMapOutputKeyClass(Text.class);
# job.setMapOutputValueClass(Text.class);

    wordcount及数据入库示例程序执行结果验证:

hbase(main):005:0> scan 't_inter_log'
ROW                   			COLUMN+CELL                   
 14100                			column=cf:count, timestamp=1441370812728, value=1
 16:04:08             			column=cf:count, timestamp=1441370812728, value=4
 18863:08             			column=cf:count, timestamp=1441370812728, value=1
 192.168.1.130        			column=cf:count, timestamp=1441370812728, value=1
 192.168.1.139        			column=cf:count, timestamp=1441370812728, value=1
 192.168.1.154        			column=cf:count, timestamp=1441370812728, value=1
 192.168.1.159       	 		column=cf:count, timestamp=1441370812728, value=1
 192.168.1.759       	 		column=cf:count, timestamp=1441370812728, value=4
 2013-09-13759       	 		column=cf:count, timestamp=1441370812728, value=4
 3904409-13759       			column=cf:count, timestamp=1441370812728, value=1
 4927409-13759       			column=cf:count, timestamp=1441370812728, value=1
 8027409-13759        			column=cf:count, timestamp=1441370812728, value=4
 HTTP409-13759        			column=cf:count, timestamp=1441370812728, value=4
 www.subnetc1.com       		column=cf:count, timestamp=1441370812728, value=1
 www.subnetc1.com/index.html 	column=cf:count, timestamp=1441370812728, value=1
 www.subnetc2.com/index.html 	column=cf:count, timestamp=1441370812728, value=1
 www.subnetc3.com/index.html 	column=cf:count, timestamp=1441370812728, value=1
 www.subnetc4.com/index.html 	column=cf:count, timestamp=1441370812728, value=1
 
18 row(s) in 1.2290 seconds 

# 每次执行时都会先删除t_inter_log表
hbase(main):007:0> scan 't_inter_log'
ROW            COLUMN+CELL
www.subnetc1.com     column=cf:detail, timestamp=1441373481468, value=2013-09-13 16:04:08\x09www.subnetc1.com\x09192.168.1.7\x0980\x09192.168.1.139\x0918863\x09HTTP\x09www.subnetc1.com/index.html
 www.subnetc2.com    column=cf:detail, timestamp=1441373481468, value=2013-09-13 16:04:08\x09www.subnetc2.com\x09192.168.1.7\x0980\x09192.168.1.159\x0914100\x09HTTP\x09www.subnetc2.com/index.html
 www.subnetc3.com    column=cf:detail, timestamp=1441373481468, value=2013-09-13 16:04:08\x09www.subnetc3.com\x09192.168.1.7\x0980\x09192.168.1.130\x094927\x09HTTP\x09www.subnetc3.com/index.html
 www.subnetc4.com    column=cf:detail, timestamp=1441373481468, value=2013-09-13 16:04:08\x09www.subnetc4.com\x09192.168.1.7\x0980\x09192.168.1.154\x0939044\x09HTTP\x09www.subnetc4.com/index.html
4 row(s) in 3.3280 seconds

6、HBase作为共享源示例

    

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯