本文转载自微信公众号「labuladong」,作者labuladong。转载本文请联系labuladong公众号。
岛屿问题是经典的面试高频题,虽然基本的岛屿问题并不难,但是岛屿问题有一些有意思的扩展,比如求子岛屿数量,求形状不同的岛屿数量等等,本文就来把这些问题一网打尽。
岛屿系列问题的核心考点就是用 DFS/BFS 算法遍历二维数组。
本文主要来讲解如何用 DFS 算法来秒杀岛屿系列问题,不过用 BFS 算法的核心思路是完全一样的,无非就是把 DFS 改写成 BFS 而已。
那么如何在二维矩阵中使用 DFS 搜索呢?如果你把二维矩阵中的每一个位置看做一个节点,这个节点的上下左右四个位置就是相邻节点,那么整个矩阵就可以抽象成一幅网状的「图」结构。
根据 学习数据结构和算法的框架思维,完全可以根据二叉树的遍历框架改写出二维矩阵的 DFS 代码框架:
- // 二叉树遍历框架
- void traverse(TreeNode root) {
- traverse(root.left);
- traverse(root.right);
- }
-
- // 二维矩阵遍历框架
- void dfs(int[][] grid, int i, int j, boolean[] visited) {
- int m = grid.length, n = grid[0].length;
- if (i < 0 || j < 0 || i >= m || j >= n) {
- // 超出索引边界
- return;
- }
- if (visited[i][j]) {
- // 已遍历过 (i, j)
- return;
- }
- // 进入节点 (i, j)
- visited[i][j] = true;
- dfs(grid, i - 1, j); // 上
- dfs(grid, i + 1, j); // 下
- dfs(grid, i, j - 1); // 左
- dfs(grid, i, j + 1); // 右
- // 离开节点 (i, j)
- visited[i][j] = false;
- }
因为二维矩阵本质上是一幅「图」,所以遍历的过程中需要一个visited布尔数组防止走回头路,如果你能理解上面这段代码,那么搞定所有岛屿问题都很简单。
这里额外说一个处理二维数组的常用小技巧,你有时会看到使用「方向数组」来处理上下左右的遍历,和前文 图遍历框架 的代码很类似:
- // 方向数组,分别代表上、下、左、右
- int[][] dirs = new int[][]{{-1,0}, {1,0}, {0,-1}, {0,1}};
-
- void dfs(int[][] grid, int i, int j, boolean[] visited) {
- int m = grid.length, n = grid[0].length;
- if (i < 0 || j < 0 || i >= m || j >= n) {
- // 超出索引边界
- return;
- }
- if (visited[i][j]) {
- // 已遍历过 (i, j)
- return;
- }
-
- // 进入节点 (i, j)
- visited[i][j] = true;
- // 递归遍历上下左右的节点
- for (int[] d : dirs) {
- int next_i = i + d[0];
- int next_j = j + d[1];
- dfs(grid, next_i, next_j);
- }
- // 离开节点 (i, j)
- visited[i][j] = false;
- }
这种写法无非就是用 for 循环处理上下左右的遍历罢了,你可以按照个人喜好选择写法。
岛屿数量
这是力扣第 200 题「岛屿数量」,最简单也是最经典的一道岛屿问题,题目会输入一个二维数组grid,其中只包含0或者1,0代表海水,1代表陆地,且假设该矩阵四周都是被海水包围着的。
我们说连成片的陆地形成岛屿,那么请你写一个算法,计算这个矩阵grid中岛屿的个数,函数签名如下:
- int numIslands(char[][] grid);
比如说题目给你输入下面这个grid有四片岛屿,算法应该返回 4:
思路很简单,关键在于如何寻找并标记「岛屿」,这就要 DFS 算法发挥作用了,我们直接看解法代码:
- // 主函数,计算岛屿数量
- int numIslands(char[][] grid) {
- int res = 0;
- int m = grid.length, n = grid[0].length;
- // 遍历 grid
- for (int i = 0; i < m; i++) {
- for (int j = 0; j < n; j++) {
- if (grid[i][j] == '1') {
- // 每发现一个岛屿,岛屿数量加一
- res++;
- // 然后使用 DFS 将岛屿淹了
- dfs(grid, i, j);
- }
- }
- }
- return res;
- }
-
- // 从 (i, j) 开始,将与之相邻的陆地都变成海水
- void dfs(char[][] grid, int i, int j) {
- int m = grid.length, n = grid[0].length;
- if (i < 0 || j < 0 || i >= m || j >= n) {
- // 超出索引边界
- return;
- }
- if (grid[i][j] == '0') {
- // 已经是海水了
- return;
- }
- // 将 (i, j) 变成海水
- grid[i][j] = '0';
- // 淹没上下左右的陆地
- dfs(grid, i + 1, j);
- dfs(grid, i, j + 1);
- dfs(grid, i - 1, j);
- dfs(grid, i, j - 1);
- }
为什么每次遇到岛屿,都要用 DFS 算法把岛屿「淹了」呢?主要是为了省事,避免维护visited数组。
因为dfs函数遍历到值为0的位置会直接返回,所以只要把经过的位置都设置为0,就可以起到不走回头路的作用。
PS:这类 DFS 算法还有个别名叫做 FloodFill 算法,现在有没有觉得 FloodFill 这个名字还挺贴切的~
这个最最基本的岛屿问题就说到这,我们来看看后面的题目有什么花样。
封闭岛屿的数量
上一题说二维矩阵四周可以认为也是被海水包围的,所以靠边的陆地也算作岛屿。
力扣第 1254 题「统计封闭岛屿的数目」和上一题有两点不同:
用0表示陆地,用1表示海水。
让你计算「封闭岛屿」的数目。所谓「封闭岛屿」就是上下左右全部被1包围的0,也就是说靠边的陆地不算作「封闭岛屿」。
函数签名如下:
- int closedIsland(int[][] grid)
比如题目给你输入如下这个二维矩阵:
算法返回 2,只有图中灰色部分的0是四周全都被海水包围着的「封闭岛屿」。
那么如何判断「封闭岛屿」呢?其实很简单,把上一题中那些靠边的岛屿排除掉,剩下的不就是「封闭岛屿」了吗?
有了这个思路,就可以直接看代码了,注意这题规定0表示陆地,用1表示海水:
- // 主函数:计算封闭岛屿的数量
- int closedIsland(int[][] grid) {
- int m = grid.length, n = grid[0].length;
- for (int j = 0; j < n; j++) {
- // 把靠上边的岛屿淹掉
- dfs(grid, 0, j);
- // 把靠下边的岛屿淹掉
- dfs(grid, m - 1, j);
- }
- for (int i = 0; i < m; i++) {
- // 把靠左边的岛屿淹掉
- dfs(grid, i, 0);
- // 把靠右边的岛屿淹掉
- dfs(grid, i, n - 1);
- }
- // 遍历 grid,剩下的岛屿都是封闭岛屿
- int res = 0;
- for (int i = 0; i < m; i++) {
- for (int j = 0; j < n; j++) {
- if (grid[i][j] == 0) {
- res++;
- dfs(grid, i, j);
- }
- }
- }
- return res;
- }
-
- // 从 (i, j) 开始,将与之相邻的陆地都变成海水
- void dfs(int[][] grid, int i, int j) {
- int m = grid.length, n = grid[0].length;
- if (i < 0 || j < 0 || i >= m || j >= n) {
- return;
- }
- if (grid[i][j] == 1) {
- // 已经是海水了
- return;
- }
- // 将 (i, j) 变成海水
- grid[i][j] = 1;
- // 淹没上下左右的陆地
- dfs(grid, i + 1, j);
- dfs(grid, i, j + 1);
- dfs(grid, i - 1, j);
- dfs(grid, i, j - 1);
- }
只要提前把靠边的陆地都淹掉,然后算出来的就是封闭岛屿了。
PS:处理这类岛屿问题除了 DFS/BFS 算法之外,Union Find 并查集算法也是一种可选的方法,前文 Union Find 算法运用 就用 Union Find 算法解决了一道类似的问题。
这道岛屿题目的解法稍微改改就可以解决力扣第 1020 题「飞地的数量」,这题不让你求封闭岛屿的数量,而是求封闭岛屿的面积总和。
其实思路都是一样的,先把靠边的陆地淹掉,然后去数剩下的陆地数量就行了,注意第 1020 题中1代表陆地,0代表海水:
- int numEnclaves(int[][] grid) {
- int m = grid.length, n = grid[0].length;
- // 淹掉靠边的陆地
- for (int i = 0; i < m; i++) {
- dfs(grid, i, 0);
- dfs(grid, i, n - 1);
- }
- for (int j = 0; j < n; j++) {
- dfs(grid, 0, j);
- dfs(grid, m - 1, j);
- }
-
- // 数一数剩下的陆地
- int res = 0;
- for (int i = 0; i < m; i++) {
- for (int j = 0; j < n; j++) {
- if (grid[i][j] == 1) {
- res += 1;
- }
- }
- }
-
- return res;
- }
-
- // 和之前的实现类似
- void dfs(int[][] grid, int i, int j) {
- // ...
- }
篇幅所限,具体代码我就不写了,我们继续看其他的岛屿问题。
岛屿的最大面积
这是力扣第 695 题「岛屿的最大面积」,0表示海水,1表示陆地,现在不让你计算岛屿的个数了,而是让你计算最大的那个岛屿的面积,函数签名如下:
- int maxAreaOfIsland(int[][] grid)
比如题目给你输入如下一个二维矩阵:
其中面积最大的是橘红色的岛屿,算法返回它的面积 6。
这题的大体思路和之前完全一样,只不过dfs函数淹没岛屿的同时,还应该想办法记录这个岛屿的面积。
我们可以给dfs函数设置返回值,记录每次淹没的陆地的个数,直接看解法吧:
- int maxAreaOfIsland(int[][] grid) {
- // 记录岛屿的最大面积
- int res = 0;
- int m = grid.length, n = grid[0].length;
- for (int i = 0; i < m; i++) {
- for (int j = 0; j < n; j++) {
- if (grid[i][j] == 1) {
- // 淹没岛屿,并更新最大岛屿面积
- res = Math.max(res, dfs(grid, i, j));
- }
- }
- }
- return res;
- }
-
- // 淹没与 (i, j) 相邻的陆地,并返回淹没的陆地面积
- int dfs(int[][] grid, int i, int j) {
- int m = grid.length, n = grid[0].length;
- if (i < 0 || j < 0 || i >= m || j >= n) {
- // 超出索引边界
- return 0;
- }
- if (grid[i][j] == 0) {
- // 已经是海水了
- return 0;
- }
- // 将 (i, j) 变成海水
- grid[i][j] = 0;
-
- return dfs(grid, i + 1, j)
- + dfs(grid, i, j + 1)
- + dfs(grid, i - 1, j)
- + dfs(grid, i, j - 1) + 1;
- }
解法和之前相比差不多,我也不多说了,接下来的两道岛屿问题是比较有技巧性的,我们重点来看一下。
子岛屿数量
如果说前面的题目都是模板题,那么力扣第 1905 题「统计子岛屿」可能得动动脑子了:
这道题的关键在于,如何快速判断子岛屿?肯定可以借助 Union Find 并查集算法 来判断,不过本文重点在 DFS 算法,就不展开并查集算法了。
什么情况下grid2中的一个岛屿B是grid1中的一个岛屿A的子岛?
当岛屿B中所有陆地在岛屿A中也是陆地的时候,岛屿B是岛屿A的子岛。
反过来说,如果岛屿B中存在一片陆地,在岛屿A的对应位置是海水,那么岛屿B就不是岛屿A的子岛。
那么,我们只要遍历grid2中的所有岛屿,把那些不可能是子岛的岛屿排除掉,剩下的就是子岛。
依据这个思路,可以直接写出下面的代码:
- int countSubIslands(int[][] grid1, int[][] grid2) {
- int m = grid1.length, n = grid1[0].length;
- for (int i = 0; i < m; i++) {
- for (int j = 0; j < n; j++) {
- if (grid1[i][j] == 0 && grid2[i][j] == 1) {
- // 这个岛屿肯定不是子岛,淹掉
- dfs(grid2, i, j);
- }
- }
- }
- // 现在 grid2 中剩下的岛屿都是子岛,计算岛屿数量
- int res = 0;
- for (int i = 0; i < m; i++) {
- for (int j = 0; j < n; j++) {
- if (grid2[i][j] == 1) {
- res++;
- dfs(grid2, i, j);
- }
- }
- }
- return res;
- }
-
- // 从 (i, j) 开始,将与之相邻的陆地都变成海水
- void dfs(int[][] grid, int i, int j) {
- int m = grid.length, n = grid[0].length;
- if (i < 0 || j < 0 || i >= m || j >= n) {
- return;
- }
- if (grid[i][j] == 0) {
- return;
- }
-
- grid[i][j] = 0;
- dfs(grid, i + 1, j);
- dfs(grid, i, j + 1);
- dfs(grid, i - 1, j);
- dfs(grid, i, j - 1);
- }
这道题的思路和计算「封闭岛屿」数量的思路有些类似,只不过后者排除那些靠边的岛屿,前者排除那些不可能是子岛的岛屿。
不同的岛屿数量
这是本文的最后一道岛屿题目,作为压轴题,当然是最有意思的。
力扣第 694 题「不同的岛屿数量」,题目还是输入一个二维矩阵,0表示海水,1表示陆地,这次让你计算 不同的 (distinct) 岛屿数量,函数签名如下:
- int numDistinctIslands(int[][] grid)
比如题目输入下面这个二维矩阵:
其中有四个岛屿,但是左下角和右上角的岛屿形状相同,所以不同的岛屿共有三个,算法返回 3。
很显然我们得想办法把二维矩阵中的「岛屿」进行转化,变成比如字符串这样的类型,然后利用 HashSet 这样的数据结构去重,最终得到不同的岛屿的个数。
如果想把岛屿转化成字符串,说白了就是序列化,序列化说白了遍历嘛,前文 二叉树的序列化和反序列化 讲了二叉树和字符串互转,这里也是类似的。
首先,对于形状相同的岛屿,如果从同一起点出发,dfs函数遍历的顺序肯定是一样的。
因为遍历顺序是写死在你的递归函数里面的,不会动态改变:
- void dfs(int[][] grid, int i, int j) {
- // 递归顺序:
- dfs(grid, i - 1, j); // 上
- dfs(grid, i + 1, j); // 下
- dfs(grid, i, j - 1); // 左
- dfs(grid, i, j + 1); // 右
- }
所以,遍历顺序从某种意义上说就可以用来描述岛屿的形状,比如下图这两个岛屿:
假设它们的遍历顺序是:
下,右,上,撤销上,撤销右,撤销下
如果我用分别用1, 2, 3, 4代表上下左右,用-1, -2, -3, -4代表上下左右的撤销,那么可以这样表示它们的遍历顺序:
2, 4, 1, -1, -4, -2
你看,这就相当于是岛屿序列化的结果,只要每次使用dfs遍历岛屿的时候生成这串数字进行比较,就可以计算到底有多少个不同的岛屿了。
要想生成这段数字,需要稍微改造dfs函数,添加一些函数参数以便记录遍历顺序:
- void dfs(int[][] grid, int i, int j, StringBuilder sb, int dir) {
- int m = grid.length, n = grid[0].length;
- if (i < 0 || j < 0 || i >= m || j >= n
- || grid[i][j] == 0) {
- return;
- }
- // 前序遍历位置:进入 (i, j)
- grid[i][j] = 0;
- sb.append(dir).append(',');
-
- dfs(grid, i - 1, j, sb, 1); // 上
- dfs(grid, i + 1, j, sb, 2); // 下
- dfs(grid, i, j - 1, sb, 3); // 左
- dfs(grid, i, j + 1, sb, 4); // 右
-
- // 后序遍历位置:离开 (i, j)
- sb.append(-dir).append(',');
- }
dir记录方向,dfs函数递归结束后,sb记录着整个遍历顺序,其实这就是前文 回溯算法核心套路 说到的回溯算法框架,你看到头来这些算法都是相通的。
有了这个dfs函数就好办了,我们可以直接写出最后的解法代码:
- int numDistinctIslands(int[][] grid) {
- int m = grid.length, n = grid[0].length;
- // 记录所有岛屿的序列化结果
- HashSet
islands = new HashSet<>(); - for (int i = 0; i < m; i++) {
- for (int j = 0; j < n; j++) {
- if (grid[i][j] == 1) {
- // 淹掉这个岛屿,同时存储岛屿的序列化结果
- StringBuilder sb = new StringBuilder();
- // 初始的方向可以随便写,不影响正确性
- dfs(grid, i, j, sb, 666);
- islands.add(sb.toString());
- }
- }
- }
- // 不相同的岛屿数量
- return islands.size();
- }
这样,这道题就解决了,至于为什么初始调用dfs函数时的dir参数可以随意写,这里涉及 DFS 和回溯算法的一个细微差别,前文 图算法基础 有写,这里就不展开了。
以上就是全部岛屿系列问题的解题思路,也许前面的题目大部分人会做,但是最后两题还是比较巧妙的,希望本文对你有帮助。