文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Hadoop和spark的性能对比

2023-06-02 14:34

关注

本篇内容主要讲解“Hadoop和spark的性能对比”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Hadoop和spark的性能对比”吧!

Hadoop和spark的性能有何区别。

  如果说Hadoop是一家大型包工队,我们可以通过它组织人员进行合作,搬砖建造房屋,弊端在于速度较慢。

  Spark是另一家包工队,成立时间较晚,但是他们搬砖更为灵活,可以实时交互地盖房子,工作效率比Hadoop快得多。

  当Hadoop开始升级,指定调度专家YARN调度工人。Spark从多个仓库搬砖(HDFS,Cassandra,S3,HBase),还允许不同专家如YARN/ MESOS对人员和任务进行调度。

  当然,Spark和Hadoop团队进行合作,问题变得更加复杂。作为两个独立的包工队,二者都有着各自的优缺点和特定的业务用例。

  因此,我们说Hadoop和spark的性能区别在于:

  Spark在内存中运行速度比Hadoop快100倍,在磁盘上运行速度快10倍。众所周知,Spark在数量只有十分之一的机器上,对100TB数据进行排序的速度比Hadoop MapReduce快速3倍。此外,Spark在机器学习应用中的速度同样更快,例如Naive Bayes和k-means。

  Spark性能之所以比Hadoop更优,原因在于每次运行MapReduce任务时,Spark都不会受到输入输出的限制。事实证明,应用程序的速度要快得多。再有Spark的DAG可以在各个步骤之间进行优化。Hadoop在MapReduce步骤之间没有任何周期性连接,这意味着在该级别不会发生性能调整。但是,如果Spark与其他共享服务在YARN上运行,则性能可能会降低并导致RAM开销内存泄漏。出于这个原因,如果用户有批处理的诉求,Hadoop被认为是更高效的系统。

到此,相信大家对“Hadoop和spark的性能对比”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯