文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

python机器学习高数篇之泰勒公式

2024-04-02 19:55

关注

不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。

实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰勒公式具有将复杂函数近似成多个幂函数叠加形式的性质,可以用它进行比较、求极限、求导、解微分方程等。

我们先来看一下泰勒公式的发明者,布鲁克·泰勒——

在这里插入图片描述

布鲁克·泰勒(Brook Taylor,1685-1732),英国数学家,牛顿学派最优秀的代表人物之一,他于1712年的一封信里首次叙述了泰勒公式。

再来看一下高数书上对泰勒公式的定义:

在这里插入图片描述

公式3-5就称为f(x)在x0处的带有拉格朗日余项的n阶泰勒公式。

初看这个泰勒公式的定义,就觉得恢宏大气,气势磅礴。不过光从泰勒公式的定义,很难直观看出它是怎么用多项式逼近原函数的。接下来我们用图像和图表来感受一下——

这里我们先列举出f(x) = cosx在原点的泰勒2阶、4阶、6阶、8阶、10阶的多项式,并用图像表示该函数及其泰勒n阶多项式。

在这里插入图片描述

对应图像如下,其中黑色线条为原函数f(x),彩色线条为多项式g(x)。可以看到随着阶数的增大,多项式在更大范围内越来越逼近原函数。

在这里插入图片描述

我们再用python实现函数y=cosx的泰勒n阶多项式,并与y=cosx的实际值进行比较,其中令n=40。


def f_cos(x):
    m = 20+1
    sum = 1.0
    for i in range(1,m): #range函数取值是左闭右开
        n = 2 * i 
        tmp1,tmp2,tmp3 = 1,1,1
        for j in range(1,i+1):
            tmp1 = -tmp1             
        for j in range(1,n+1):                    
            tmp2 = tmp2*x
            tmp3 = tmp3*j
        sum = sum + tmp1*tmp2/tmp3
    return sum

from numpy import *
for x in range(-20,21):
    print("x = " + str(x))
    print("f_cos(x) = " + str(f_cos(x)))
    print("cos(x) = " + str(cos(x)))

比较自定义的f_cos(x)和numpy库的cosx的误差:

x取值 自定义的f_cos(x) numpy库的cosx 误差(f_cos(x) - cos(x)) 分析
20 2577.3069 0.4081 2576.8988 误差非常大
19 305.1701 0.9887 304.1814 误差较大
18 32.5969 0.6603 31.9366 存在误差
17 2.6676 -0.2752 2.9428 存在误差
16 -0.7234 -0.9577 0.2343 存在0.1级误差
15 -0.7439 -0.7597 0.0158 存在0.01级误差
14 0.1376 0.1367 0.0009 存在0.0001级误差
13 0.9075 0.9074 0.0000 精度范围内一致
12 0.8439 0.8439 0.0000 精度范围内一致
11 0.0044 0.0044 0.0000 精度范围内一致
10 -0.8391 -0.8391 0.0000 精度范围内一致
9 -0.9111 -0.9111 0.0000 精度范围内一致
8 -0.1455 -0.1455 0.0000 精度范围内一致
7 0.7539 0.7539 0.0000 精度范围内一致
6 0.9602 0.9602 0.0000 精度范围内一致
5 0.2837 0.2837 0.0000 精度范围内一致
4 -0.6536 -0.6536 0.0000 精度范围内一致
3 -0.9900 -0.9900 0.0000 精度范围内一致
2 -0.4161 -0.4161 0.0000 精度范围内一致
1 0.5403 0.5403 0.0000 精度范围内一致
0 1.0000 1.0000 0.0000 精度范围内一致

由于f(x) = cosx函数关于y轴对称,这里只列举出了x轴右半部分[0,20]的范围,x轴左半部分的结果与右半部分结果相同。

在[0,20]范围内,当x=20时,二者的误差非常大。随着x的减小,二者的误差也在逐渐减小。在[0,13]范围内,二者在精度范围内完全一致,几乎零误差。

大家可以尝试一下,把n的值调大,这个精度一致的范围会变大。例如此例若n=30,即y=cosx的泰勒30阶多项式,则在[-20,20]范围内,二者精度都完全一致。感兴趣的同学可以运用同样的方法,分析一下其他函数。

再试着写出函数y=sinx的泰勒n阶多项式的python程序,其中n=19。


def f_sin(x):
    m = 10+1
    sum = 0.0
    for i in range(1,m):
        n = 2 * i - 1     
        tmp1,tmp2,tmp3 = 1,1,1
        for j in range(1,i):
            tmp1 = -tmp1  
        for j in range(1,n+1):          
            tmp2 = tmp2*x
            tmp3 = tmp3*j
        sum = sum + tmp1*tmp2/tmp3 
    return sum

from numpy import *
for x in range(-20,21):
    print("x = " + str(x))
    print("f_sin(x) = " + str(f_sin(x)))
    print("sin(x) = " + str(sin(x)))

后续会继续增加一些函数的泰勒n阶多项式python程序(可能会偷懒)。

最后推荐一个比较好用的在线画函数的工具Desmos:

https://www.desmos.com/calculator?lang=zh-CN

简易教程:

https://www.ravenxrz.ink/archives/27d14722.html

还可以用著名的心形线画个爱心哦:

在这里插入图片描述

到此这篇关于python机器学习高数篇之泰勒公式的文章就介绍到这了,更多相关python泰勒公式内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯