文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python数据处理之pd.Series()函数怎么使用

2023-07-02 11:43

关注

本文小编为大家详细介绍“Python数据处理之pd.Series()函数怎么使用”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python数据处理之pd.Series()函数怎么使用”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

1.Series介绍

Pandas模块的数据结构主要有两种:1.Series 2.DataFrame

Series 是一维数组,基于Numpy的ndarray 结构

Series([data, index, dtype, name, copy, …])    # One-dimensional ndarray with axis labels (including time series).

2.Series创建

import Pandas as pd import numpy as np

1.pd.Series([list],index=[list])

参数为list ,index为可选参数,若不填写则默认为index从0开始

obj = pd.Series([4, 7, -5, 3, 7, np.nan])obj

输出结果为:

0    4.0
1    7.0
2   -5.0
3    3.0
4    7.0
5    NaN
dtype: float64

2.pd.Series(np.arange())

arr = np.arange(6)s = pd.Series(arr)s

输出结果为:

0    0
1    1
2    2
3    3
4    4
5    5
dtype: int32

pd.Series({dict})d = {'a':10,'b':20,'c':30,'d':40,'e':50}s = pd.Series(d)s

输出结果为:

a    10
b    20
c    30
d    40
e    50
dtype: int64

可以通过DataFrame中某一行或者某一列创建序列

3 Series基本属性

obj.values# array([ 4.,  7., -5.,  3.,  7., nan])
obj.index# RangeIndex(start=0, stop=6, step=1)

4 索引

5 计算、描述性统计

 Series.value_counts:Return a Series containing counts of unique values.

index = ['Bob', 'Steve', 'Jeff', 'Ryan', 'Jeff', 'Ryan'] obj = pd.Series([4, 7, -5, 3, 7, np.nan],index = index)obj.value_counts()

输出结果为:

 7.0    2
 3.0    1
-5.0    1
 4.0    1
dtype: int64

6 排序

Series.sort_values

Series.sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

Parameters:

ParametersDescription
axis{0 or ‘index’}, default 0,Axis to direct sorting. The value ‘index’ is accepted for compatibility with DataFrame.sort_values.
ascendinbool, default True,If True, sort values in ascending order, otherwise descending.
inplacebool, default FalseIf True, perform operation in-place.
kind{‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ is the only stable algorithm.
na_position{‘first’ or ‘last’}, default ‘last’,Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.

Returns:

Series:Series ordered by values.

obj.sort_values()

输出结果为:

Jeff    -5.0
Ryan     3.0
Bob      4.0
Steve    7.0
Jeff     7.0
Ryan     NaN
dtype: float64

Series.rank(self, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)[source]

Parameters:

ParametersDescription
axis{0 or ‘index’, 1 or ‘columns’}, default 0Index to direct ranking.
method{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’How to rank the group of records that have the same value (i.e. ties): average, average rank of the group; min: lowest rank in the group; max: highest rank in the group; first: ranks assigned in order they appear in the array; dense: like ‘min’, but rank always increases by 1,between groups
numeric_onlybool, optional,For DataFrame objects, rank only numeric columns if set to True.
na_option{‘keep’, ‘top’, ‘bottom’}, default ‘keep’, How to rank NaN values:;keep: assign NaN rank to NaN values; top: assign smallest rank to NaN values if ascending; bottom: assign highest rank to NaN values if ascending
ascendingbool, default True Whether or not the elements should be ranked in ascending order.
pctbool, default False Whether or not to display the returned rankings in percentile form.

Returns:

same type as caller :Return a Series or DataFrame with data ranks as values.

# obj.rank()            #从大到小排,NaN还是NaNobj.rank(method='dense')  # obj.rank(method='min')# obj.rank(method='max')# obj.rank(method='first')# obj.rank(method='dense')

输出结果为:

Bob      3.0
Steve    4.0
Jeff     1.0
Ryan     2.0
Jeff     4.0
Ryan     NaN
dtype: float64

读到这里,这篇“Python数据处理之pd.Series()函数怎么使用”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯