文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

mysql中雪花算法是什么意思

2024-04-02 19:55

关注

mysql中雪花算法是什么意思?这个问题可能是我们日常学习或工作经常见到的。希望通过这个问题能让你收获颇深。下面是小编给大家带来的参考内容,让我们一起来看看吧!

一、为何要用雪花算法

1、问题产生的背景

现如今越来越多的公司都在用分布式、微服务,那么对应的就会针对不同的服务进行数据库拆分,然后当数据量上来的时候也会进行分表,那么随之而来的就是分表以后id的问题。

例如之前单体项目中一个表中的数据主键id都是自增的,mysql是利用autoincrement来实现自增,而oracle是利用序列来实现的,但是当单表数据量上来以后就要进行水平分表,阿里java开发建议是单表大于500w的时候就要分表,但是具体还是得看业务,如果索引用的号的话,单表千万的数据也是可以的。水平分表就是将一张表的数据分成多张表,那么问题就来了如果还是按照以前的自增来做主键id,那么就会出现id重复,这个时候就得考虑用什么方案来解决分布式id的问题了。

2、解决方案

2.1、数据库表

可以在某个库中专门维护一张表,然后每次无论哪个表需要自增id的时候都去查这个表的记录,然后用for update锁表,然后取到的值加一,然后返回以后把再把值记录到表中,但是这个方法适合并发量比较小的项目,因此每次都得锁表。

2.2、redis

因为redis是单线程的,可以在redis中维护一个键值对,然后哪个表需要直接去redis中取值然后加一,但是这个跟上面一样由于单线程都是对高并发的支持不高,只适合并发量小的项目。

2.3、uuid

可以使用uuid作为不重复主键id,但是uuid有个问题就是其是无序的字符串,如果使用uuid当做主键,那么主键索引就会失效。

2.4、雪花算法

雪花算法是解决分布式id的一个高效的方案,大部分互联网公司都在使用雪花算法,当然还有公司自己实现其他的方案。

二、雪花算法

1、原理

mysql中雪花算法是什么意思

雪花算法就是使用64位long类型的数据存储id,最高位一位存储0或者1,0代表整数,1代表负数,一般都是0,所以最高位不变,41位存储毫秒级时间戳,10位存储机器码(包括5位datacenterId和5位workerId),12存储序列号。这样最大2的10次方的机器,也就是1024台机器,最多每毫秒每台机器产生2的12次方也就是4096个id。(下面有代码实现)

但是一般我们没有那么多台机器,所以我们也可以使用53位来存储id。为什么要用53位?

因为我们几乎都是跟web页面打交道,就需要跟js打交道,js支持最大的整型范围为53位,超过这个范围就会丢失精度,53之内可以直接由js读取,超过53位就需要转换成字符串才能保证js处理正确。53存储的话,32位存储秒级时间戳,5位存储机器码,16位存储序列化,这样每台机器每秒可以生产65536个不重复的id。

2、缺点

由于雪花算法严重依赖时间,所以当发生服务器时钟回拨的问题是会导致可能产生重复的id。当然几乎没有公司会修改服务器时间,修改以后会导致各种问题,公司宁愿新加一台服务器也不愿意修改服务器时间,但是不排除特殊情况。

如何解决时钟回拨的问题?可以对序列化的初始值设置步长,每次触发时钟回拨事件,则其初始步长就加1w,可以在下面代码的第85行来实现,将sequence的初始值设置为10000。

三、代码实现

64位的代码实现:

package com.yl.common;

public class SnowflakeIdWorker {

 // ==============================Fields===========================================
 
 private final long twepoch = 1577808000000L;

 
 private final long workerIdBits = 5L;

 
 private final long datacenterIdBits = 5L;

 
 private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

 
 private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

 
 private final long sequenceBits = 12L;

 
 private final long workerIdShift = sequenceBits;

 
 private final long datacenterIdShift = sequenceBits + workerIdBits;

 
 private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

 
 private final long sequenceMask = -1L ^ (-1L << sequenceBits);

 
 private long workerId;

 
 private long datacenterId;

 
 private long sequence = 0L;

 
 private long lastTimestamp = -1L;

 //==============================Constructors=====================================
 
 public SnowflakeIdWorker(long workerId, long datacenterId) {
 if (workerId > maxWorkerId || workerId < 0) {
 throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
 }
 if (datacenterId > maxDatacenterId || datacenterId < 0) {
 throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
 }
 this.workerId = workerId;
 this.datacenterId = datacenterId;
 }

 // ==============================Methods==========================================
 
 public synchronized long nextId() {
 long timestamp = timeGen();

 //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
 if (timestamp < lastTimestamp) {
 throw new RuntimeException(
  String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
 }

 //如果是同一时间生成的,则进行毫秒内序列
 if (lastTimestamp == timestamp) {
 sequence = (sequence + 1) & sequenceMask;
 //毫秒内序列溢出
 if (sequence == 0) {
 //阻塞到下一个毫秒,获得新的时间戳
 timestamp = tilNextMillis(lastTimestamp);
 }
 }
 //时间戳改变,毫秒内序列重置
 else {
 sequence = 0L;
 }

 //上次生成ID的时间截
 lastTimestamp = timestamp;

 //移位并通过或运算拼到一起组成64位的ID
 return ((timestamp - twepoch) << timestampLeftShift) //
 | (datacenterId << datacenterIdShift) //
 | (workerId << workerIdShift) //
 | sequence;
 }

 
 protected long tilNextMillis(long lastTimestamp) {
 long timestamp = timeGen();
 while (timestamp <= lastTimestamp) {
 timestamp = timeGen();
 }
 return timestamp;
 }

 
 protected long timeGen() {
 return System.currentTimeMillis();
 }

 //==============================Test=============================================
 
 public static void main(String[] args) {
 SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
 
 for (int i = 0; i < 100; i++) {
 long id = idWorker.nextId();
 System.out.println(id);
 }
 }
}

补充知识:雪花算法实现分布式自增长ID

我就废话不多说了,大家还是直接看代码吧~


public class IdWorker {
 // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
 private final static long twepoch = 1288834974657L;
 // 机器标识位数
 private final static long workerIdBits = 5L;
 // 数据中心标识位数
 private final static long datacenterIdBits = 5L;
 // 机器ID最大值
 private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
 // 数据中心ID最大值
 private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 // 毫秒内自增位
 private final static long sequenceBits = 12L;
 // 机器ID偏左移12位
 private final static long workerIdShift = sequenceBits;
 // 数据中心ID左移17位
 private final static long datacenterIdShift = sequenceBits + workerIdBits;
 // 时间毫秒左移22位
 private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

 private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
 
 private static long lastTimestamp = -1L;
 // 0,并发控制
 private long sequence = 0L;

 private final long workerId;
 // 数据标识id部分
 private final long datacenterId;

 public IdWorker(){
 this.datacenterId = getDatacenterId(maxDatacenterId);
 this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
 }
 
 public IdWorker(long workerId, long datacenterId) {
 if (workerId > maxWorkerId || workerId < 0) {
  throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
 }
 if (datacenterId > maxDatacenterId || datacenterId < 0) {
  throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
 }
 this.workerId = workerId;
 this.datacenterId = datacenterId;
 }
 
 public synchronized long nextId() {
 long timestamp = timeGen();
 if (timestamp < lastTimestamp) {
  throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
 }

 if (lastTimestamp == timestamp) {
  // 当前毫秒内,则+1
  sequence = (sequence + 1) & sequenceMask;
  if (sequence == 0) {
  // 当前毫秒内计数满了,则等待下一秒
  timestamp = tilNextMillis(lastTimestamp);
  }
 } else {
  sequence = 0L;
 }
 lastTimestamp = timestamp;
 // ID偏移组合生成最终的ID,并返回ID
 long nextId = ((timestamp - twepoch) << timestampLeftShift)
  | (datacenterId << datacenterIdShift)
  | (workerId << workerIdShift) | sequence;

 return nextId;
 }

 private long tilNextMillis(final long lastTimestamp) {
 long timestamp = this.timeGen();
 while (timestamp <= lastTimestamp) {
  timestamp = this.timeGen();
 }
 return timestamp;
 }

 private long timeGen() {
 return System.currentTimeMillis();
 }

 
 protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
 StringBuffer mpid = new StringBuffer();
 mpid.append(datacenterId);
 String name = ManagementFactory.getRuntimeMXBean().getName();
 if (!name.isEmpty()) {
  
  mpid.append(name.split("@")[0]);
 }
 
 return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
 }

 
 protected static long getDatacenterId(long maxDatacenterId) {
 long id = 0L;
 try {
  InetAddress ip = InetAddress.getLocalHost();
  NetworkInterface network = NetworkInterface.getByInetAddress(ip);
  if (network == null) {
  id = 1L;
  } else {
  byte[] mac = network.getHardwareAddress();
  id = ((0x000000FF & (long) mac[mac.length - 1])
   | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
  id = id % (maxDatacenterId + 1);
  }
 } catch (Exception e) {
  System.out.println(" getDatacenterId: " + e.getMessage());
 }
 return id;
 }


}

感谢各位的阅读!看完上述内容,你们对mysql中雪花算法是什么意思大概了解了吗?希望文章内容对大家有所帮助。如果想了解更多相关文章内容,欢迎关注亿速云行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯