文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

R语言线性回归知识点总结

2024-04-02 19:55

关注

回归分析是一种非常广泛使用的统计工具,用于建立两个变量之间的关系模型。 这些变量之一称为预测变量,其值通过实验收集。 另一个变量称为响应变量,其值从预测变量派生。

在线性回归中,这两个变量通过方程相关,其中这两个变量的指数(幂)为1.数学上,线性关系表示当绘制为曲线图时的直线。 任何变量的指数不等于1的非线性关系将创建一条曲线。

线性回归的一般数学方程为


y = ax + b

以下是所使用的参数的描述 

建立回归的步骤

回归的简单例子是当人的身高已知时预测人的体重。 为了做到这一点,我们需要有一个人的身高和体重之间的关系。

创建关系的步骤是 

输入数据

下面是代表观察的样本数据


# Values of height
151, 174, 138, 186, 128, 136, 179, 163, 152, 131

# Values of weight.
63, 81, 56, 91, 47, 57, 76, 72, 62, 48

LM()函数

此函数创建预测变量和响应变量之间的关系模型。

语法

线性回归中lm()函数的基本语法是


lm(formula,data)

以下是所使用的参数的说明

创建关系模型并获取系数


x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

print(relation)

当我们执行上面的代码,它产生以下结果


Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x  
  38.4551          0.6746 

获取相关的摘要


x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

print(summary(relation))

当我们执行上面的代码,它产生以下结果


Call:
lm(formula = y ~ x)

Residuals:
    Min      1Q     Median      3Q     Max 
-6.3002   1.6629  0.0412    1.8944  3.9775 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)38.45509    8.04901 4.778  0.00139 ** 
x             0.67461    0.05191  12.997 1.16e-06 ***
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared:  0.9548,    Adjusted R-squared:  0.9491 
F-statistic: 168.9 on 1 and 8 DF,  p-value: 1.164e-06

predict()函数

语法

线性回归中的predict()的基本语法是


predict(object, newdata)

以下是所使用的参数的描述 

预测新人的体重


# The predictor vector.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

# The resposne vector.
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# Apply the lm() function.
relation <- lm(y~x)

# Find weight of a person with height 170.
a <- data.frame(x = 170)
result <-  predict(relation,a)
print(result)

当我们执行上面的代码,它产生以下结果


       1 
76.22869 

以图形方式可视化回归


# Create the predictor and response variable.
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)

# Give the chart file a name.
png(file = "linearregression.png")

# Plot the chart.
plot(y,x,col = "blue",main = "Height & Weight Regression",
abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in cm")

# Save the file.
dev.off()

当我们执行上面的代码,它产生以下结果

R中线性回归

以上就是R语言线性回归知识点总结的详细内容,更多关于R语言线性回归的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯