文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

深度学习的工作原理:窥视驱动今日AI的神经网络的内部

2024-12-02 20:03

关注

【51CTO.com快译】今天人工智能的繁荣离不开一种名为深度学习的技术,该技术基于人工神经网络。本文通过图形解释了如何构建和训练这些神经网络。

图1. 架构图

人工神经网络中的每个神经元对输入求和,并运用激活函数以确定输出。这种架构的灵感来自大脑中的机理,其中​​神经元通过突触彼此之间传输信号。

图2

这是一个假设的前馈深度神经网络的结构(之所以是“深度”,是由于它有多个隐藏层)。该例子展示的一个网络解释了手写数字的图像,并将它们分类为10个可能数字中的一个。

输入层含有许多神经元,每个神经元都有一个激活(activation),被设置为图像中一个像素的灰度值。这些输入神经元连接到下一层的神经元,在它们乘以某个值(称为权重)后传递其激活级别。第二层中的每个神经元对许多输入求和,并运用激活函数以确定输出,该输出以相同的方式前馈。

训练

这种神经网络通过计算实际输出和预期输出之间的差异来加以训练。这里的数学优化问题中的维度与网络中的可调参数一样多——主要是神经元之间连接的权重,可以是正[蓝线] 或负[红线]。

训练网络本质上是找到这种多维“损失”或“成本”函数的最小值。它在多轮训练中迭代完成,逐渐改变网络的状态。实际上,这需要根据为一组随机输入示例计算的输出对网络的权重进行多次小的调整,每次都从控制输出层的权重开始,然后通过网络向后移动。(为简单起见,这里只显示了与每一层中单个神经元相关的连接。)这个反向传播过程针对许多随机的训练样本集重复进行,直到损失函数最小化,然后网络提供它为任何新输入所能提供的最佳结果。

图3

图4

第1步:在输入端显示手写的“3”时,未经训练的网络的输出神经元会有随机激活。希望与3相关的输出神经元有高激活[深色阴影],而其他输出神经元有低激活[浅色阴影]。因此,比如说,必须加大与3相关的神经元的激活[紫色箭头]。

图5

第2步:为此,从第二个隐藏层中的神经元到数字“3”的输出神经元的连接权重应该会变得更正[黑色箭头],变化的大小与所连接的隐藏神经元的激活成正比。

图6

第 3 步:然后对第二个隐藏层中的神经元执行类似的过程。比如说,为了使网络更准确,该层中的顶部神经元可能需要降低激活[绿色箭头]。通过调整其与第一个隐藏层[黑色箭头]的连接权重,可以将网络往该方向推进。

图7

第4步:然后对第一个隐藏层重复该过程。比如说,该层中的第一个神经元可能需要加大激活 [橙色箭头]。

原文How Deep Learning Works Inside the neural networks that power today's AI,作者:SAMUEL K. MOORE DAVID SCHNEIDER ELIZA STRICKLAND

【51CTO译稿,合作站点转载请注明原文译者和出处为51CTO.com】

 

来源:51CTO内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯