Hough圆变换的原理很多博客都已经说得非常清楚了,但是手动实现的比较少,所以本文直接贴上手动实现的代码。
这里使用的图片是一堆硬币:
首先利用通过计算梯度来寻找边缘,代码如下:
def detect_edges(image):
h = image.shape[0]
w = image.shape[1]
sobeling = np.zeros((h, w), np.float64)
sobelx = [[-3, 0, 3],
[-10, 0, 10],
[-3, 0, 3]]
sobelx = np.array(sobelx)
sobely = [[-3, -10, -3],
[0, 0, 0],
[3, 10, 3]]
sobely = np.array(sobely)
gx = 0
gy = 0
testi = 0
for i in range(1, h - 1):
for j in range(1, w - 1):
edgex = 0
edgey = 0
for k in range(-1, 2):
for l in range(-1, 2):
edgex += image[k + i, l + j] * sobelx[1 + k, 1 + l]
edgey += image[k + i, l + j] * sobely[1 + k, 1 + l]
gx = abs(edgex)
gy = abs(edgey)
sobeling[i, j] = gx + gy
# if you want to imshow ,run codes below first
# if sobeling[i,j]>255:
# sobeling[i, j]=255
# sobeling[i, j] = sobeling[i,j]/255
return sobeling
需要注意的是,这里使用的kernel内的数值比较大,所以得到了结果图中的某些位置的数值超过255,但并不影响显示,但如果想通过cv2.imshow来显示,就需要将超过255的地方设为255即可(已经在代码中用注释标出),结果如下:
接下来就是要进行Hough圆变换,先看代码:
def hough_circles(edge_image, edge_thresh, radius_values):
h = edge_image.shape[0]
w = edge_image.shape[1]
# print(h,w)
edgimg = np.zeros((h, w), np.int64)
for i in range(h):
for j in range(w):
if edge_image[i][j] > edge_thresh:
edgimg[i][j] = 255
else:
edgimg[i][j] = 0
accum_array = np.zeros((len(radius_values), h, w))
# return edgimg , []
for i in range(h):
print('Hough Transform进度:', i, '/', h)
for j in range(w):
if edgimg[i][j] != 0:
for r in range(len(radius_values)):
rr = radius_values[r]
hdown = max(0, i - rr)
for a in range(hdown, i):
b = round(j+math.sqrt(rr*rr - (a - i) * (a - i)))
if b>=0 and b<=w-1:
accum_array[r][a][b] += 1
if 2 * i - a >= 0 and 2 * i - a <= h - 1:
accum_array[r][2 * i - a][b] += 1
if 2 * j - b >= 0 and 2 * j - b <= w - 1:
accum_array[r][a][2 * j - b] += 1
if 2 * i - a >= 0 and 2 * i - a <= h - 1 and 2 * j - b >= 0 and 2 * j - b <= w - 1:
accum_array[r][2 * i - a][2 * j - b] += 1
return edgimg, accum_array
其中输入是我们之前得到的边缘图,以及确定强边缘的阈值,以及一个包含着我们估计的半径的数组;返回值是强边缘图以及参数域矩阵。代码中首先遍历边缘图,通过阈值留下那些较强的位置,这里的阈值需要自己根据自己的输入图进行调节。接着就是进行Hough变换,这里的候选半径集合需要根据自己的输入图进行调节。在绘制参数域的过程中,只遍历了所需正方形区域(大小为 r*r)的 1/4,这是因为在坐出参数域上的一个点之后,由于圆的对称性,就可以找到与之对称的另外三个点,无需额外进行遍历。
最后一步就是从参数域矩阵中提取出结果圆,代码如下,其中筛选阈值需要根据你的输入图像自己调节:
def find_circles(image, accum_array, radius_values, hough_thresh):
returnlist = []
hlist = []
wlist = []
rlist = []
returnimg = deepcopy(image)
for r in range(accum_array.shape[0]):
print('Find Circles 进度:', r, '/', accum_array.shape[0])
for h in range(accum_array.shape[1]):
for w in range(accum_array.shape[2]):
if accum_array[r][h][w] > hough_thresh:
tmp = 0
for i in range(len(hlist)):
if abs(w-wlist[i])<10 and abs(h-hlist[i])<10:
tmp = 1
break
if tmp == 0:
#print(accum_array[r][h][w])
rr = radius_values[r]
flag = '(h,w,r)is:(' + str(h) + ',' + str(w) + ',' + str(rr) + ')'
returnlist.append(flag)
hlist.append(h)
wlist.append(w)
rlist.append(rr)
print('圆的数量:', len(hlist))
for i in range(len(hlist)):
center = (wlist[i], hlist[i])
rr = rlist[i]
color = (0, 255, 0)
thickness = 2
cv2.circle(returnimg, center, rr, color, thickness)
return returnlist, returnimg
注意一下在这一步中需要将那些圆心相近的圆剔除掉,只保留一个结果。
接着是main函数,这没啥好说的:
def main(argv):
img_name = argv[0]
img = cv2.imread('data/' + img_name + '.png', cv2.IMREAD_COLOR)
# print(img.shape[0], img.shape[1])
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# print(gray_image.shape[0], gray_image.shape[1])
img1 = detect_edges(gray_image)
cv2.imwrite('output/' + img_name + "_after_find_detect.png", img1)
thresh = 1500
# 需要注意的是,在img1中有些地方的像素值是高于255的,这是由于之前的kernel内的数更大
# 但这并不影响图像的显示
# 因此这里的thresh要大于255
radius_values = []
for i in range(10):
radius_values.append(20 + i)
edgeimg, accum_array = hough_circles(img1, thresh, radius_values)
cv2.imwrite('output/' + img_name + "_after_binary.png", edgeimg)
# Findcircle
hough_thresh = 70
resultlist, resultimg = find_circles(img, accum_array, radius_values, hough_thresh)
print(resultlist)
cv2.imwrite('output/' + img_name + "_circles.png", resultimg)
if __name__ == '__main__':
sys.argv.append("coins")
main(sys.argv[1:])
# TODO
下面是我的运行结果:
到此这篇关于Python手动实现Hough圆变换的示例代码的文章就介绍到这了,更多相关Python Hough圆变换内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!