文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

用Python解剖数据:深入数据分析

2024-02-17 07:41

关注

深入数据分析:

数据探索

Python提供了一系列库和模块,如NumPy、Pandas和Matplotlib,用于数据探索。这些工具允许您加载、浏览和操作数据,以了解其分布、模式和异常值。例如:

import pandas as pd
import matplotlib.pyplot as plt

# 加载数据
df = pd.read_csv("data.csv")

# 查看数据概览
print(df.head())

# 探索数据的分布
plt.hist(df["column_name"])
plt.show()

数据可视化

将数据可视化是探索其模式和关系的有效方法。Python提供了一系列可视化库,如Matplotlib、Seaborn和Plotly。这些库允许您创建交互式图表和数据仪表盘。例如:

import matplotlib.pyplot as plt

# 创建散点图
plt.scatter(df["feature_1"], df["feature_2"])
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()

特征工程

特征工程是数据分析的重要一步,它包括数据转换、特征选择和特征提取。Python提供了一系列工具来帮助您准备数据以进行建模,例如Scikit-learn。例如:

from sklearn.preprocessing import StandardScaler

# 标准化数据
scaler = StandardScaler()
df["features"] = scaler.fit_transform(df["features"])

机器学习

Python是机器学习的流行语言,提供了一系列库和框架,如Scikit-learn、TensorFlow和Keras。这些库允许您构建、训练和评价机器学习模型。例如:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df["features"], df["target"], test_size=0.2)

# 训练模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

总结

Python是数据分析的理想选择,提供了一系列功能强大的库和框架。通过利用Python提供的工具和技术,数据分析人员可以有效探索、可视化、准备和分析数据,以获得有意义的见解。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯