文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

深度学习:使用UNet做图像语义分割,训练自己制作的数据集,详细教程

2023-08-31 07:05

关注

语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。我总结了使用UNet网络做图像语义分割的方法,教程很详细,学者耐心学习。

目录

配套教程的源码包,下载链接为:添加链接描述,提取码:17pb。当然官网也给了源码包,官网下载链接为:添加链接描述。学者也可以下载官网提供的,建议学者直接下载我提供的学习,我已经补了一些坑,添加过一些实用代码。下载好我提供的源码包,解压后的样纸见下:

在这里插入图片描述

Python的版本选用3.7或者3.8都可以。

在这里插入图片描述

1、打标签

数据集的准备,看学者自己个人想要识别什么物体,自行准备即可。我提供的源码包中有我自己喷血已经打好标签的数据集,打标签需要用到的工具叫作labelme,关于labelme工具的具体使用教程,学者看我的另外一篇博客,链接为:添加链接描述
准备好的数据集先存放到工程文件夹下的datasets文件下,具体的文件存放位置关系见下:

在这里插入图片描述

2、复制数据集和标签文件到VOCdevkit文件中

通过上面步骤制作好标签文件后,将数据集和标签文件从datasets文件中复制一份到VOCdevkit文件中,具体见下:

在这里插入图片描述

在这里插入图片描述

3、提取训练集和验证集图片名称

代码中需要修改到的地方见下:

在这里插入图片描述

学者只要运行源码包中的voc_annotion.py文件后,就可以在 ./VOCdevkit/VOC2007/ImageSets/Segmentation目录下自动生成train.txt和val.txt文件,具体见下:

在这里插入图片描述

1、训练参数的修改

下面有很多的参数可以修改,学者根据自己的训练情况进行修改即可,训练修改的参数都在train.py文件中,具体见下:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、开始训练

上面的参数修改好后,直接运行train.py文件就开始训练了,见下:

在这里插入图片描述
在这里插入图片描述

1、保存模型权重文件

上面的训练好后,模型都会被保存到工程文件夹根目录中的logs文件中,见下:

在这里插入图片描述

2、修改模型测试参数

测试模型时,需要修改到的地方见下:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

学者在测试的时候,有三种模式可以选择,(1)测试图片;(2)测试电脑硬盘中的视频;(3)调用电脑自带摄像头测试。三种模式的选择,学者修改下面代码即可,见下:

在这里插入图片描述

3、开始模型测试

上面的模型测试参数修改好后,直接运行predict.py即可开始预测:

在这里插入图片描述

3.1、图片测试

在这里插入图片描述

3.2、电脑硬盘中视频测试

在这里插入图片描述

3.3、调用电脑自带摄像头测试

在这里插入图片描述

以上就是使用UNet做图像语义分割,自己打标签训练的详细教程,参数调整部分,学者根据需求自行调整,很多参数保持默认即可,参数name_classes的数量和类名一定要根据自己数据集修改。希望我总结的教程帮你快速上手使用,谢谢!

来源地址:https://blog.csdn.net/qq_40280673/article/details/127449624

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯