今天小编给大家分享一下Go语言函数的延迟调用实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
基本功能
在以下这段代码中,我们操作一个文件,无论成功与否都需要关闭文件句柄。这里在三处不同的位置都调用了file.Close()方法,代码显得非常冗余。
func ReadWrite() bool { file.Open("file") // Do your thing if failureX { file.Close() return false } if failureY { file.Close() return false } file.Close() return true}
我们利用延迟调用来优化代码。定义后的defer代码,会在return之前返回,让代码显得更加紧凑,且可读性变强,对上面的代码改造如下:
func ReadWrite() bool { file.Open("filename") // Define a defer code here defer file.Close() // Do your thing if failureX { return false } if failureY { return false } return true}
示例一:延迟调用执行顺序
我们通过这个示例来看一下延迟调用与正常代码之间的执行顺序
package mainimport "fmt"func TestDefer(x int) { defer fmt.Println("Defer code called") switch x { case 1: fmt.Println("Case 1 triggered!") return case 10: fmt.Println("Case 10 triggered!") return default: fmt.Println("Case default triggered!") return }}func main() { TestDefer(100) TestDefer(1) TestDefer(10)}
先简单分析一下代码逻辑:
首先定义了一个公共的TestDefer函数,这个函数接受一个整型的参数
函数体内定义了defer部分,会输出一句Defer code called
switch case会根据输入的整型参数,输出相应的trigger语句
按照上面对延迟调用的分析,每次满足case语句后,才会输出Defer code called
从输出中,我们可以观察到如下现象:
首次执行,default条件满足,Case default triggered先输出,再输出defer内容
第二次调用,1条件满足,最后输出defer内容
第三次调用,10条件满足,最后输出defer内容
从这个实例中,我们很明显观察到,defer语句是在return之前执行
Case default triggered!
Defer code called
Case 1 triggered!
Defer code called
Case 10 triggered!
Defer code called
示例二:多defer使用方法
package mainimport "fmt"func TestDefer(x int) { defer fmt.Println("1st defined Defer code called") defer fmt.Println("2nd defined Defer code called") defer fmt.Println("3rd defined Defer code called") switch x { case 1: fmt.Println("Case 1 triggered!") return case 10: fmt.Println("Case 10 triggered!") return default: fmt.Println("Case default triggered!") return }}func main() { TestDefer(100)}
仍然是相同的例子,但是在TestDefer中我们定义了三个defer输出,根据LIFO原则,输出的顺序是3rd->2nd->1st,根据最后的结果,也是逆向向上执行defer输出。
Case default triggered!
3rd defined Defer code called
2nd defined Defer code called
1st defined Defer code called
实例三:defer与局部变量、返回值的关系
就在整理这篇笔记的时候,发现了自己的认知误区,主要是本节实例三中发现的,先来看一下英文的描述:
A defer statement pushes a function call onto a list. The list of saved calls is executed after the surrounding function returns. Defer is commonly used to simplify functions that perform various clean-up actions.
对于上面的这段话的理解:
defer定义的函数会被放入list中
存储的defer函数会在周边函数返回后执行
defer一般用于环境清理
原则一:defer函数的参数值,取决于defer函数调用时变量的值
package mainimport "fmt"func a() int { i := 0 fmt.Printf("func i = %v\n", i) defer fmt.Printf("defer i = %v\n", i) i++ fmt.Printf("func i = %v\n", i) defer fmt.Printf("defer after i++ = %v\n", i) return i}func main() { i := a() fmt.Printf("main i = %v\n", i)}
下面是代码执行输出,我们来一起分析一下:
在函数a中,定义了局部变量i
在函数执行过程中进行了自增操作i++
分别在i++前后,对i值进行了输出,也就是我们下面输出结果前两行,与预期一致
分别在i++前后,定义两个defer语句,都是用fmt输出i的值,输出的顺序与示例二的逻辑一致,先输出的是defer after,再输出defer
根据原则一,在defer after的输出中,由于i++完成自增,所以当时i的值已经变为了1,所以输出为1
同样是根据原则一,在defer的输出中,i并没有进行自增,所以在当时情况下,i的值仍然为0,所以输出为0
最后返回的i值为1,主函数中输出i的值为1
func i = 0func i = 1defer after i++ = 1defer i = 0main i = 1
原则二:defer可以读取或修改显示定义的返回值
package mainimport "fmt"func a() (i int) { fmt.Printf("func initial i = %v\n", i) defer func() { fmt.Printf("defer func initial i++ = %v\n", i) i++ fmt.Printf("defer func after i++ = %v\n", i) }() fmt.Printf("func before return i = %v\n", i) return 10}func main() { i := a() fmt.Printf("main i = %v\n", i)}
虽然在a()函数内,显示的返回了10,但是main函数中得到的结果是defer函数自增后的结果,我们来分析一下代码:
在a函数定义时,我们显示的定义了返回变量i和类型int
在刚刚进入函数时,i的初始化值位0,返回前也是0
在最后的return时,直接返回了10
接着我们再来看defer函数执行情况,刚刚进入defer函数时,返回值i得到的值正是刚才返回的10
而在自增后,i的值变成了11
最后我们在主函数中,获得的返回值也是11,印证了我们原则中的defer函数对于返回值的读取和修改
func initial i = 0func before return i = 0defer func initial i++ = 10defer func after i++ = 11main i = 11
以上就是“Go语言函数的延迟调用实例分析”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。