文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python Pandas 入门秘笈,让数据处理轻松上手!

2024-04-02 19:55

关注
import pandas as pd

创建 DataFrame

df = pd.DataFrame({"name": ["Alice", "Bob", "Carol"], "age": [20, 25, 30]})
df = pd.DataFrame({
    "name": ["Alice", "Bob", "Carol"],
    "age": [20, 25, 30],
    "city": ["London", "Paris", "Rome"]
})
df = pd.read_csv("data.csv")

访问数据

df["age"]
df.loc[0]
df.loc[0, "age"]

操纵数据

df["city"] = ["London", "Paris", "Rome"]
df.drop("age", axis=1, inplace=True)
filtered_df = df[df["age"] > 25]
sorted_df = df.sort_values("age")
grouped_df = df.groupby("city")

合并数据

df1 = pd.DataFrame({"name": ["Alice", "Bob"], "age": [20, 25]})
df2 = pd.DataFrame({"name": ["Bob", "Carol"], "city": ["Paris", "Rome"]})
merged_df = pd.merge(df1, df2, on="name")
df1 = pd.DataFrame({"name": ["Alice", "Bob"], "age": [20, 25]})
df2 = pd.DataFrame({"city": ["London", "Paris"], "index": [0, 1]})
merged_df = pd.merge(df1, df2, left_index=True, right_index=True)

数据处理

df["age"].sum()
df["age"].mean()
df["age"].std()
df["city"].mode()

输出数据

df.to_csv("data.csv")
df.to_excel("data.xlsx")
df.to_html("data.html")
阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯