文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python如何调用C++传递numpy数据

2023-06-29 17:30

关注

这篇文章主要为大家展示了“Python如何调用C++传递numpy数据”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python如何调用C++传递numpy数据”这篇文章吧。

1.C++ 代码

Demo.h

#pragma oncevoid GeneratorGaussKernel(int ksize, float sigma, float* kernel);void LeftAndRightMirrorImageUInt8(unsigned char* in, unsigned char* out, int width, int height);void LeftAndRightMirrorImageFloat(float* in, float* out, int width, int height);void UpAndDownMirrorImageFloat(float* in, float* out, int width, int height);void UpAndDownMirrorImageUInt8(unsigned char* in, unsigned char* out, int width, int height);void ImageFilterFloat(float* in, float* out, int width, int height, float* filterKernel, int kw, int kh);void SaltAndPepperFloat(float* in, float* out, int width, int height, float minV, float maxV, float proportion);void SaltAndPepperUInt8(unsigned char* in, unsigned char* out, int width, int height, float minV, float maxV, float proportion);void ImageMinMax(float* in, int width, int height, int channels, float* minV, float* maxV);void ImageMinMax(unsigned char* in, int width, int height, int channels, unsigned char* minV, unsigned char* maxV);void ImageMulAAddBFloatFloat(float* in, float* out, int width, int height, int channels, float A, float B);void ImageMulAAddBUInt8UInt8(unsigned char* in, unsigned char* out, int width, int height, int channels, float A, float B);void ImageMulAAddBUInt8Float(unsigned char* in, float* out, int width, int height, int channels, float A, float B);void NormalizeUInt8Float(unsigned char* in, float* out, int width, int height, int channels, int type);void NormalizeFloatFloat(float* in, float* out, int width, int height, int channels, int type);void RGBAvgUInt8Float(unsigned char* in, float* out, int width, int height);void RGBAvgFloatFloat(float* in, float* out, int width, int height);

Demo.cpp

#include <Python.h>#include <malloc.h>#include <numpy/arrayobject.h>#include <iostream>#include <vector>#include <xmmintrin.h>#include <immintrin.h>#include "omp.h"class ImageCoord {public:    ImageCoord() {        x = 0; y = 0;    }    ImageCoord(const ImageCoord& coord) {        x = coord.x;        y = coord.y;    }    ImageCoord(int x, int y) {        this->x = x;        this->y = y;    }    void operator= (ImageCoord& coord) {        x = coord.x;        y = coord.y;    }    int x, y;};class Random {public:    Random() {        srand((unsigned int)time(NULL));    }    ImageCoord RandomImageCoord(int width, int height) {        ImageCoord ans;        ans.x = rand() % width;        ans.y = rand() % height;        return ans;    }    bool RandomBoolean() {        return rand() % 2 == 1;    }};static Random gRandom;void GeneratorGaussKernel(int ksize, float sigma, float* kernel){    int bufferSize = ksize * ksize;    float sigmasigma2 = 2.0f * sigma * sigma;    float sigmasigma2Inv = 1.f / sigmasigma2;    float sigmasigma2PIInv = sigmasigma2Inv / 3.14159265358979f;    int radius = ksize / 2;    float sum = 0.f;    for (int i = -radius; i <= radius; ++i) {        for (int j = -radius; j <= radius; ++j) {            kernel[(i + radius) * ksize + (j + radius)] = sigmasigma2PIInv * expf(-(i * i + j * j) * sigmasigma2Inv);        }    }    for (int i = 0; i < bufferSize; ++i) {        sum += kernel[i];    }    sum = 1.f / sum;    for (int i = 0; i < bufferSize; ++i) {        kernel[i] = kernel[i] * sum;    }}void LeftAndRightMirrorImageUInt8(unsigned char* in, unsigned char* out, int width, int height){    for (int i = 0; i < height; ++i) {        int hoffset = i * width;        for (int j = 0; j < width; ++j) {            int woffset = (hoffset + j) * 3;            int woffset_ = (hoffset + width - 1 - j) * 3;            for (int n = 0; n < 3; ++n) {                out[woffset_ + n] = in[woffset + n];            }        }    }}void LeftAndRightMirrorImageFloat(float* in, float* out, int width, int height){    for (int i = 0; i < height; ++i) {        int hoffset = i * width;        for (int j = 0; j < width; ++j) {            int woffset = (hoffset + j) * 3;            int woffset_ = (hoffset + width - 1 - j) * 3;            for (int n = 0; n < 3; ++n) {                out[woffset_ + n] = in[woffset + n];            }        }    }}void UpAndDownMirrorImageFloat(float* in, float* out, int width, int height){    int lineOffset = width * 3;    int lineSize = lineOffset * sizeof(float);    float* outTmp = out + lineOffset * height - lineOffset;    float* inTmp = in;    for (int i = 0; i < height; ++i) {        memcpy_s(outTmp, lineSize, inTmp, lineSize);        outTmp -= lineOffset;        inTmp += lineOffset;    }}void UpAndDownMirrorImageUInt8(unsigned char* in, unsigned char* out, int width, int height){    int lineOffset = width * 3;    int lineSize = lineOffset * sizeof(unsigned char);    unsigned char* outTmp = out + lineOffset * height - lineOffset;    unsigned char* inTmp = in;    for (int i = 0; i < height; ++i) {        memcpy_s(outTmp, lineSize, inTmp, lineSize);        outTmp -= lineOffset;        inTmp += lineOffset;    }}#if 0void Conv(float* in, float* out, int width, float* filter, int ksize) {    int lineSize = width * 3;    float* inTemp = in;    float* outTemp = out;    out[0] = 0.f; out[1] = 0.f; out[2] = 0.f;    for (int i = 0; i < ksize; ++i) {        for (int j = 0; j < ksize; ++j) {            int xoffset = j * 3;            out[0] += (*filter) * inTemp[xoffset + 0];            out[1] += (*filter) * inTemp[xoffset + 1];            out[2] += (*filter) * inTemp[xoffset + 2];            filter++;        }        inTemp = inTemp + lineSize;    }}void ImageFilterFloat(float* in, float* out, int width, int height, float* filterKernel, int kw, int kh){    size_t size = (size_t)width * (size_t)height * sizeof(float) * 3;    int startX = kw / 2;    int endX = width - kw / 2;        int startY = kh / 2;    int endY = height - kh / 2;    float* tempOut = out + (startY * width + startX) * 3;    memset(out, 0, size);    //memcpy_s(out, size, in, size);    omp_set_num_threads(32);#pragma omp parallel for    for (int i = 0; i <= height - kh; ++i) {        int yoffset = i * width * 3;        for (int j = 0; j <= width - kw; ++j) {            int xoffset = yoffset + j * 3;            Conv((in + xoffset), (tempOut + xoffset), width, filterKernel, kw);        }    }}#elif 1void Conv(float* in, float* out, int width, __m128* filter, int ksize) {    int lineSize = width * 3;    float* inTemp = in;    float* outTemp = out;    out[0] = 0.f; out[1] = 0.f; out[2] = 0.f;    __m128 sum = _mm_set_ps1(0.f);    for (int i = 0; i < ksize; ++i) {        for (int j = 0; j < ksize; ++j) {            int xoffset = j * 3;            __m128 img_value = _mm_set_ps(1.f, inTemp[xoffset + 2], inTemp[xoffset + 1], inTemp[xoffset + 0]);            sum = _mm_add_ps(_mm_mul_ps((*filter), img_value), sum);            filter++;        }        inTemp = inTemp + lineSize;    }    out[0] = sum.m128_f32[0];    out[1] = sum.m128_f32[1];    out[2] = sum.m128_f32[2];}void ImageFilterFloat(float* in, float* out, int width, int height, float* filterKernel, int kw, int kh){    size_t size = (size_t)width * (size_t)height * sizeof(float) * 3;    int startX = kw / 2;    int endX = width - kw / 2;    int startY = kh / 2;    int endY = height - kh / 2;    float* tempOut = out + (startY * width + startX) * 3;    memset(out, 0, size);    __m128* filterKernel_m128 = (__m128*)_mm_malloc(kw * kh * sizeof(__m128), sizeof(__m128));    for (int i = 0; i < kw * kh; ++i) {        filterKernel_m128[i] = _mm_set_ps1(filterKernel[i]);    }    omp_set_num_threads(32);#pragma omp parallel for    for (int i = 0; i <= height - kh; ++i) {        int yoffset = i * width * 3;        for (int j = 0; j <= width - kw; ++j) {            int xoffset = yoffset + j * 3;            Conv((in + xoffset), (tempOut + xoffset), width, filterKernel_m128, kw);        }    }    if (filterKernel_m128) {        _mm_free(filterKernel_m128);        filterKernel_m128 = NULL;    }}#endifvoid SaltAndPepperFloat(float* in, float* out, int width, int height, float minV, float maxV, float proportion){    int coordNumber = (int)(width * height * proportion);    if (in != out) {        memcpy_s(out, width * height * 3 * sizeof(float), in, width * height * 3 * sizeof(float));    }    for (int i = 0; i < coordNumber; ++i) {        ImageCoord coord = gRandom.RandomImageCoord(width, height);        bool saltOrPepper = gRandom.RandomBoolean();        float value = saltOrPepper ? minV : maxV;        int x = coord.x;        int y = coord.y;        int offset = (y * width + x) * 3;        for (int c = 0; c < 3; ++c) {            out[offset + c] = value;        }    }}void SaltAndPepperUInt8(unsigned char* in, unsigned char* out, int width, int height, float minV, float maxV, float proportion){    int coordNumber = (int)(width * height * proportion);    if (in != out) {        memcpy_s(out, width * height * 3 * sizeof(unsigned char), in, width * height * 3 * sizeof(unsigned char));    }    for (int i = 0; i < coordNumber; ++i) {        ImageCoord coord = gRandom.RandomImageCoord(width, height);        bool saltOrPepper = gRandom.RandomBoolean();        float value = saltOrPepper ? minV : maxV;        int x = coord.x;        int y = coord.y;        int offset = (y * width + x) * 3;        for (int c = 0; c < 3; ++c) {            out[offset + c] = (unsigned char)value;        }    }}void ImageMinMax(float* in, int width, int height, int channels, float* minV, float* maxV){    float minValue = 99999.f;    float maxValue = -minValue;    int number = width * height * channels;    for (int i = 0; i < number; ++i) {        float value = in[i];        if (value > maxValue) {            maxValue = value;        }        if (value < minValue) {            minValue = value;        }    }    *minV = (float)minValue;    *maxV = (float)maxValue;}void ImageMinMax(unsigned char* in, int width, int height, int channels, unsigned char* minV, unsigned char* maxV){    int minValue = 256;    int maxValue = -1;    int number = width * height * channels;    for (int i = 0; i < number; ++i) {        int value = in[i];        if (value > maxValue) {            maxValue = value;        }        if (value < minValue) {            minValue = value;        }    }    *minV = (unsigned char)minValue;    *maxV = (unsigned char)maxValue;}void ImageMulAAddBFloatFloat(float* in, float* out, int width, int height, int channels, float A, float B){    int size = width * height * channels;    for (int i = 0; i < size; ++i) {        out[i] = in[i] * A + B;    }}void ImageMulAAddBUInt8UInt8(unsigned char* in, unsigned char* out, int width, int height, int channels, float A, float B){#define ALVACLAMP(x, minV, maxV) \        (x) < (minV) ? (minV) : ((x) > (maxV) ? (maxV) : (x))    int size = width * height * channels;    for (int i = 0; i < size; ++i) {        out[i] = (unsigned char)(ALVACLAMP(in[i] * A + B, 0, 255));    }#undef ALVACLAMP}void ImageMulAAddBUInt8Float(unsigned char* in, float* out, int width, int height, int channels, float A, float B){    int size = width * height * channels;    for (int i = 0; i < size; ++i) {        out[i] = in[i] * A + B;    }}void NormalizeUInt8Float(unsigned char* in, float* out, int width, int height, int channels, int type){    unsigned char minV, maxV;    ImageMinMax(in, width, height, channels, &minV, &maxV);    int size = width * height * channels;    float inv = 1.f / (maxV - minV);    float offset = 0.f;    if (type == 1) {        inv *= 2.f;        offset = -1.f;    }    for (int i = 0; i < size; ++i) {        out[i] = (in[i] - minV) * inv + offset;    }}void NormalizeFloatFloat(float* in, float* out, int width, int height, int channels, int type){    float minV, maxV;    ImageMinMax(in, width, height, channels, &minV, &maxV);    int size = width * height * channels;    float inv = 1.f / (maxV - minV);    float offset = 0.f;    if (type == 1) {        inv *= 2.f;        offset = -1.f;    }    for (int i = 0; i < size; ++i) {        out[i] = (in[i] - minV) * inv + offset;    }}void RGBAvgUInt8Float(unsigned char* in, float* out, int width, int height){    int size = width * height;    for (int i = 0; i < size; ++i) {        float avg = (in[i * 3 + 0] + in[i * 3 + 1] + in[i * 3 + 2]) / 3.f;        out[i * 3 + 0] = avg;        out[i * 3 + 1] = avg;        out[i * 3 + 2] = avg;    }}void RGBAvgFloatFloat(float* in, float* out, int width, int height){    int size = width * height;    for (int i = 0; i < size; ++i) {        float avg = (in[i * 3 + 0] + in[i * 3 + 1] + in[i * 3 + 2]) / 3.f;        out[i * 3 + 0] = avg;        out[i * 3 + 1] = avg;        out[i * 3 + 2] = avg;    }}static PyObject* GeneratorGaussKernel(PyObject* self, PyObject* args) {    //int ksize, float sigma, float* kernel    PyObject* pyobj_filter = NULL;    int ksize;    float sigma;    int ret = PyArg_ParseTuple(args, "Oif", &pyobj_filter, &ksize, &sigma);    PyArrayObject* oarr = (PyArrayObject*)pyobj_filter;    float* data = (float*)(oarr->data);    GeneratorGaussKernel(ksize, sigma, data);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* LeftAndRightMirrorImageUInt8(PyObject* self, PyObject* args) {    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    int ret = PyArg_ParseTuple(args, "OOii", &pyobj_img, &pyobj_out_img, &width, &height);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    unsigned char* dataIn = (unsigned char*)(oarr->data);    unsigned char* dataOut = (unsigned char*)(oarr_out->data);        LeftAndRightMirrorImageUInt8(dataIn, dataOut, width, height);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;    //std::cout << "";}static PyObject* LeftAndRightMirrorImageFloat(PyObject* self, PyObject* args) {    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    int ret = PyArg_ParseTuple(args, "OOii", &pyobj_img, &pyobj_out_img, &width, &height);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    float* dataIn = (float*)(oarr->data);        float* dataOut = (float*)(oarr_out->data);    LeftAndRightMirrorImageFloat(dataIn, dataOut, width, height);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* UpAndDownMirrorImageUInt8(PyObject* self, PyObject* args) {    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    int ret = PyArg_ParseTuple(args, "OOii", &pyobj_img, &pyobj_out_img, &width, &height);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    unsigned char* dataIn = (unsigned char*)(oarr->data);    unsigned char* dataOut = (unsigned char*)(oarr_out->data);    UpAndDownMirrorImageUInt8(dataIn, dataOut, width, height);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* UpAndDownMirrorImageFloat(PyObject* self, PyObject* args) {    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    int ret = PyArg_ParseTuple(args, "OOii", &pyobj_img, &pyobj_out_img, &width, &height);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    float* dataIn = (float*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    UpAndDownMirrorImageFloat(dataIn, dataOut, width, height);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* ImageFilterFloat(PyObject* self, PyObject* args) {    //float* in, float* out, int width, int height, float* filterKernel, int kw, int kh    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    PyObject* pyobj_filterKernel = NULL;    int width, height;    int kw, kh;    int ret = PyArg_ParseTuple(args, "OOiiOii", &pyobj_img, &pyobj_out_img, &width, &height, &pyobj_filterKernel, &kw, &kh);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    PyArrayObject* kernel = (PyArrayObject*)pyobj_filterKernel;    float* dataIn = (float*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    float* filter = (float*)(kernel->data);    ImageFilterFloat(dataIn, dataOut, width, height, filter, kw, kh);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* SaltAndPepperFloat(PyObject* self, PyObject* args) {    //float* in, float* out, int width, int height, float minV, float maxV, float proportion    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    float minV, maxV, proportion;    int ret = PyArg_ParseTuple(args, "OOiifff", &pyobj_img, &pyobj_out_img, &width, &height, &minV, &maxV, &proportion);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    float* dataIn = (float*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    SaltAndPepperFloat(dataIn, dataOut, width, height, minV, maxV, proportion);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* SaltAndPepperUInt8(PyObject* self, PyObject* args) {    //float* in, float* out, int width, int height, float minV, float maxV, float proportion    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    float minV, maxV, proportion;    int ret = PyArg_ParseTuple(args, "OOiifff", &pyobj_img, &pyobj_out_img, &width, &height, &minV, &maxV, &proportion);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    unsigned char* dataIn = (unsigned char*)(oarr->data);    unsigned char* dataOut = (unsigned char*)(oarr_out->data);    SaltAndPepperUInt8(dataIn, dataOut, width, height, minV, maxV, proportion);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* ImageMulAAddBFloatFloat(PyObject* self, PyObject* args) {    //float* in, float* out, int width, int height, int channels, float A, float B    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height, channels = 3;    float A, B;    int ret = PyArg_ParseTuple(args, "OOiiff", &pyobj_img, &pyobj_out_img, &width, &height, &A, &B);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    float* dataIn = (float*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    ImageMulAAddBFloatFloat(dataIn, dataOut, width, height, channels, A, B);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* ImageMulAAddBUInt8Float(PyObject* self, PyObject* args) {    //float* in, float* out, int width, int height, int channels, float A, float B    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height, channels = 3;    float A, B;    int ret = PyArg_ParseTuple(args, "OOiiff", &pyobj_img, &pyobj_out_img, &width, &height, &A, &B);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    unsigned char* dataIn = (unsigned char*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    ImageMulAAddBUInt8Float(dataIn, dataOut, width, height, channels, A, B);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* ImageMulAAddBUInt8UInt8(PyObject* self, PyObject* args) {    //float* in, float* out, int width, int height, int channels, float A, float B    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height, channels = 3;    float A, B;    int ret = PyArg_ParseTuple(args, "OOiiff", &pyobj_img, &pyobj_out_img, &width, &height, &A, &B);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    unsigned char* dataIn = (unsigned char*)(oarr->data);    unsigned char* dataOut = (unsigned char*)(oarr_out->data);    ImageMulAAddBUInt8UInt8(dataIn, dataOut, width, height, channels, A, B);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* NormalizeUInt8Float(PyObject* self, PyObject* args) {    // unsigned char* in, float* out, int width, int height, int channels, int type    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height, channels = 3;    int type;    int ret = PyArg_ParseTuple(args, "OOiii", &pyobj_img, &pyobj_out_img, &width, &height, &type);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    unsigned char* dataIn = (unsigned char*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    NormalizeUInt8Float(dataIn, dataOut, width, height, channels, type);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* NormalizeFloatFloat(PyObject* self, PyObject* args) {    // unsigned char* in, float* out, int width, int height, int channels, int type    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height, channels = 3;    int type;    int ret = PyArg_ParseTuple(args, "OOiii", &pyobj_img, &pyobj_out_img, &width, &height, &type);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    float* dataIn = (float*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    NormalizeFloatFloat(dataIn, dataOut, width, height, channels, type);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* RGBAvgUInt8Float(PyObject* self, PyObject* args) {    // unsigned char* in, float* out, int width, int height    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    int ret = PyArg_ParseTuple(args, "OOii", &pyobj_img, &pyobj_out_img, &width, &height);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    unsigned char* dataIn = (unsigned char*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    RGBAvgUInt8Float(dataIn, dataOut, width, height);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyObject* RGBAvgFloatFloat(PyObject* self, PyObject* args) {    // unsigned char* in, float* out, int width, int height    PyObject* pyobj_img = NULL;    PyObject* pyobj_out_img = NULL;    int width, height;    int ret = PyArg_ParseTuple(args, "OOii", &pyobj_img, &pyobj_out_img, &width, &height);    PyArrayObject* oarr = (PyArrayObject*)pyobj_img;    PyArrayObject* oarr_out = (PyArrayObject*)pyobj_out_img;    float* dataIn = (float*)(oarr->data);    float* dataOut = (float*)(oarr_out->data);    RGBAvgFloatFloat(dataIn, dataOut, width, height);    PyObject* result = PyUnicode_FromFormat("result:%s", "ok");    return result;}static PyMethodDef DemoMethods[] = {    {"LeftAndRightMirrorImageUInt8", (PyCFunction)LeftAndRightMirrorImageUInt8, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"LeftAndRightMirrorImageFloat", (PyCFunction)LeftAndRightMirrorImageFloat, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"UpAndDownMirrorImageUInt8", (PyCFunction)UpAndDownMirrorImageUInt8, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"UpAndDownMirrorImageFloat", (PyCFunction)UpAndDownMirrorImageFloat, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"ImageFilterFloat", (PyCFunction)ImageFilterFloat, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"SaltAndPepperFloat", (PyCFunction)SaltAndPepperFloat, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"SaltAndPepperUInt8", (PyCFunction)SaltAndPepperUInt8, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"ImageMulAAddBFloatFloat", (PyCFunction)ImageMulAAddBFloatFloat, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"ImageMulAAddBUInt8Float", (PyCFunction)ImageMulAAddBUInt8Float, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"ImageMulAAddBUInt8UInt8", (PyCFunction)ImageMulAAddBUInt8UInt8, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"NormalizeUInt8Float", (PyCFunction)NormalizeUInt8Float, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"NormalizeFloatFloat", (PyCFunction)NormalizeFloatFloat, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"RGBAvgUInt8Float", (PyCFunction)RGBAvgUInt8Float, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"RGBAvgFloatFloat", (PyCFunction)RGBAvgFloatFloat, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {"GeneratorGaussKernel", (PyCFunction)GeneratorGaussKernel, METH_VARARGS | METH_KEYWORDS, "I guess here is description." },    {NULL, NULL, 0, NULL}};static struct PyModuleDef demoModule = {    PyModuleDef_HEAD_INIT,    "mirror",    NULL,    -1,    DemoMethods};PyMODINIT_FUNCPyInit_ImgProcessing(void) {  // ImgProcessing 为生成的dll名称    return PyModule_Create(&demoModule);}

2.Python 代码

把C++ 编译出的ImgProcessing.dll 改为 ImgProcessing.pyd 并 拷贝到Python工程下

# -*- coding:utf-8 -*-import cv2import randomimport numpy as npimport ImgProcessing as augclass AugmentImagesBase:    def _gauss(self, x, y, sigma=1.):        Z = 2 * np.pi * sigma ** 2        kernel_value = 1 / Z * np.exp(-(x ** 2 + y ** 2) / 2 / sigma ** 2)        return kernel_value    def _gauss_kernel(self, kwidth, kheight, kchannel=1):        kernels = np.zeros((kheight, kwidth, kchannel, 1), np.float32)        mid = np.floor(kwidth / 2)        for kernel_idx in range(kchannel):            for i in range(kheight):                for j in range(kwidth):                    kernels[i, j, kernel_idx, 0] = self._gauss(i - mid, j - mid)        if kchannel == 1:            kernels = np.reshape(kernels, (kheight, kwidth))        return kernels    def left_right_flip(self, img_in, img_out, width=336, height=192):        aug.AlvaLeftAndRightMirrorImageUInt8(img_in, img_out, width, height)        return img_out    def up_down_flip(self, img_in, img_out, width=336, height=192):        aug.AlvaUpAndDownMirrorImageUInt8(img_in, img_out, width, height)        return img_out    def filtering(self, img_in, img_out, width=336, height=192, kernel=None, kwidth=3, kheight=3):        aug.AlvaImageFilterFloat(img_in, img_out, width, height, kernel, kwidth, kheight)        return img_out    def pepper_salt(self, img_in, img_out, width=336, height=192, min_v=0, max_v=255, proportion=0.1):        rand_proportion = random.uniform(0., proportion)        aug.AlvaSaltAndPepperUInt8(img_in, img_out, width, height, min_v, max_v, rand_proportion)        return img_out    def contrast(self, img_in, img_out, width=336, height=192, a=0.6, b=0.4):        aug.AlvaImageMulAAddBUInt8UInt8(img_in, img_out, width, height, a, b)        return img_out    def average_rgb(self, img_in, img_out, width=336, height=192):        img_in = img_in.astype(np.float32)        img_out = img_out.astype(np.float32)        aug.AlvaRGBAvgFloatFloat(img_in, img_out, width, height)        img_out = img_out.astype(np.uint8)        return img_out    def normalize(self, img_in, img_out, width=336, height=192, type=1):        aug.AlvaNormalizeUInt8Float(img_in, img_out, width, height, type)        return img_out    def normal(self, img_in, img_out):        return img_in    def rota_180(self, img_in, img_out):        return cv2.rotate(img_in, cv2.ROTATE_180)    def rand_aug(self, img_in):        img_in = np.asarray(img_in, dtype=np.uint8)        img_out = np.ones_like(img_in).astype(np.uint8)        aug_func = {            "left_right_flip": self.left_right_flip,            'up_down_flip': self.up_down_flip,            'pepper_salt': self.pepper_salt,            'contrast': self.contrast,            'average_rgb': self.average_rgb,            "normal": self.normal,            "rota_180": self.rota_180,        }        img_out_curr = np.ones_like(img_in[0]).astype(np.uint8)        aug_names = []        for i in range(img_in.shape[0]):            aug_name = random.sample(list(aug_func.keys()), 1)[0]            img_out_curr = aug_func[aug_name](np.squeeze(img_in[i]), img_out_curr)            img_out[i] = img_out_curr            aug_names.append(aug_name)        return img_out, aug_namesdef image_aug(img_path):    import cv2    import time    aug_tools = AugmentImagesBase()    kernel = aug_tools._gauss_kernel(5, 5)    img_in = cv2.imread(img_path).astype(np.float32)    img_out = np.ones_like(img_in).astype(np.float32)    time1 = time.time()    for i in range(1000):        # img_out, aug_names = aug_tools.average_rgb(img_in, img_out)        img_out = aug_tools.filtering(img_in, img_out, kernel=kernel, kwidth=5, kheight=5)    time2 = time.time()    print("end time:", time2 - time1)    # cv2.imshow(aug_names[0], img_out[0])    cv2.imshow("aug img", img_out.astype(np.uint8))    cv2.imshow('src img', img_in.astype(np.uint8))    cv2.waitKey(0)if __name__ == "__main__":    img_path = r"G:\20210917\img\1.jpg"    image_aug(img_path)

PyArg_ParseTuple 的使用见:PyArg_ParseTuple

以上是“Python如何调用C++传递numpy数据”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注编程网行业资讯频道!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯