网络整体结构图
CFF结构图
import torchimport torch.nn as nnimport torch.nn.functional as Ffrom nets.xception import xceptionfrom nets.mobilenetv2 import mobilenetv2class MobileNetV2(nn.Module):def __init__(self, downsample_factor=8, pretrained=True):super(MobileNetV2, self).__init__()from functools import partialmodel = mobilenetv2(pretrained)self.features = model.features[:-1]self.total_idx = len(self.features)self.down_idx = [2, 4, 7, 14]if downsample_factor == 8:for i in range(self.down_idx[-2], self.down_idx[-1]):self.features[i].apply(partial(self._nostride_dilate, dilate=2))for i in range(self.down_idx[-1], self.total_idx):self.features[i].apply(partial(self._nostride_dilate, dilate=4))elif downsample_factor == 16:for i in range(self.down_idx[-1], self.total_idx):self.features[i].apply(partial(self._nostride_dilate, dilate=2))def _nostride_dilate(self, m, dilate):classname = m.__class__.__name__if classname.find('Conv') != -1:if m.stride == (2, 2):m.stride = (1, 1)if m.kernel_size == (3, 3):m.dilation = (dilate//2, dilate//2)m.padding = (dilate//2, dilate//2)else:if m.kernel_size == (3, 3):m.dilation = (dilate, dilate)m.padding = (dilate, dilate)def forward(self, x):#输入shape为576*576*3low_level_features = self.features[:4](x) #144*144*24the_three_features = self.features[:7](x) #72*72*32the_four_features = self.features[:11](x) #36*36*64x = self.features[4:](low_level_features) #36*36*320return low_level_features, the_three_features, the_four_features, x#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#class ASPP(nn.Module):def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):super(ASPP, self).__init__()self.branch1 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch2 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch3 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch4 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True)self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)self.branch5_relu = nn.ReLU(inplace=True)self.conv_cat = nn.Sequential(nn.Conv2d(dim_out*5, dim_out, 1, 1, padding=0,bias=True), #dim_out=256nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)def forward(self, x):[b, c, row, col] = x.size()#-----------------------------------------## 一共五个分支#-----------------------------------------#conv1x1 = self.branch1(x)conv3x3_1 = self.branch2(x)conv3x3_2 = self.branch3(x)conv3x3_3 = self.branch4(x)#-----------------------------------------## 第五个分支,全局平均池化+卷积#-----------------------------------------#global_feature = torch.mean(x,2,True)global_feature = torch.mean(global_feature,3,True)global_feature = self.branch5_conv(global_feature)global_feature = self.branch5_bn(global_feature)global_feature = self.branch5_relu(global_feature)global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True)#-----------------------------------------## 将五个分支的内容堆叠起来# 然后1x1卷积整合特征。#-----------------------------------------#feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1)result = self.conv_cat(feature_cat) #256通道return resultclass DeepLab(nn.Module):def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16):super(DeepLab, self).__init__()if backbone=="xception":#----------------------------------## 获得两个特征层# 浅层特征 [128,128,256]# 主干部分 [30,30,2048]#----------------------------------#self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained)in_channels = 2048low_level_channels = 256elif backbone=="mobilenet":#----------------------------------## 获得两个特征层# 浅层特征 [128,128,24]# 主干部分 [30,30,320]#----------------------------------#self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained)in_channels = 320low_level_channels = 24# the_three_channels = 32# the_four_channels = 64else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone))#CA注意力机制self.CA = CoordAtt(320, 320)#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor)#----------------------------------## 浅层特征边#----------------------------------#self.shortcut_conv = nn.Sequential(nn.Conv2d(low_level_channels, 48, 1),nn.BatchNorm2d(48),nn.ReLU(inplace=True))self.cat_conv = nn.Sequential(nn.Conv2d(48+256, 256, 3, stride=1, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Conv2d(256, 256, 3, stride=1, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Dropout(0.1),)self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1)#CFFself.F1 = nn.Sequential(nn.Conv2d(32, 192, 1, stride=1, padding=0),nn.BatchNorm2d(192))self.F2_1 = nn.Sequential(nn.Conv2d(64, 64, 3, 1, padding=2, dilation=2, bias=True), # dilation=2的膨胀卷积nn.BatchNorm2d(64, momentum=0.1),)def forward(self, x):H, W = x.size(2), x.size(3)#-----------------------------------------## 获得两个特征层# low_level_features: 浅层特征-进行卷积处理# x : 主干部分-利用ASPP结构进行加强特征提取#-----------------------------------------#low_level_features, the_three_features, the_four_features, x = self.backbone(x)x = self.CA(x)x = self.aspp(x) #输出256通道low_level_features = self.shortcut_conv(low_level_features) #144*144*48#---------------F1 = self.F1(the_three_features) # 72*72*32-72*72*192# 36*36*64-72*72*64F2_0 = F.interpolate(the_four_features, size=(the_three_features.size(2), the_three_features.size(3)), mode='bilinear', align_corners=True)F2_1 = self.F2_1(F2_0) # 72*72*64-72*72*64FN = F.relu_(torch.cat((F1, F2_1), dim=1)) # 72*72*256#----------------------------------------#x = F.interpolate(x, size=(the_three_features.size(2), the_three_features.size(3)), mode='bilinear', align_corners=True) # 72*72*256FN2 = FN + x # 72*72*256F2_1 = F.interpolate(FN2, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) #144*144*256#-----------------------------------------## 将加强特征边上采样# 与浅层特征堆叠后利用卷积进行特征提取#-----------------------------------------## x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)# x = self.cat_conv(torch.cat((x, low_level_features), dim=1))x = self.cat_conv(torch.cat((low_level_features, F2_1), dim=1)) #144*144*304-144*144*256x = self.cls_conv(x)x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True)return x#-----------------------------------------## CA#-----------------------------------------#import torchimport torch.nn as nnimport torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, oup, reduction=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn, c, h, w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y)x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out
网络整体结构图
import torchimport torch.nn as nnimport torch.nn.functional as Ffrom nets.xception import xceptionfrom nets.mobilenetv2 import mobilenetv2class MobileNetV2(nn.Module):def __init__(self, downsample_factor=8, pretrained=True):super(MobileNetV2, self).__init__()from functools import partialmodel = mobilenetv2(pretrained)self.features = model.features[:-1]self.total_idx = len(self.features)self.down_idx = [2, 4, 7, 14]if downsample_factor == 8:for i in range(self.down_idx[-2], self.down_idx[-1]):self.features[i].apply(partial(self._nostride_dilate, dilate=2))for i in range(self.down_idx[-1], self.total_idx):self.features[i].apply(partial(self._nostride_dilate, dilate=4))elif downsample_factor == 16:for i in range(self.down_idx[-1], self.total_idx):self.features[i].apply(partial(self._nostride_dilate, dilate=2))def _nostride_dilate(self, m, dilate):classname = m.__class__.__name__if classname.find('Conv') != -1:if m.stride == (2, 2):m.stride = (1, 1)if m.kernel_size == (3, 3):m.dilation = (dilate//2, dilate//2)m.padding = (dilate//2, dilate//2)else:if m.kernel_size == (3, 3):m.dilation = (dilate, dilate)m.padding = (dilate, dilate)def forward(self, x):# 输入shape为576*576*3low_level_features = self.features[:4](x) # 144*144*24the_three_features = self.features[:7](x) # 72*72*32the_four_features = self.features[:11](x) # 36*36*64x = self.features[4:](low_level_features) # 36*36*320return low_level_features, the_three_features, the_four_features, x#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#class ASPP(nn.Module):def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):super(ASPP, self).__init__()self.branch1 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch2 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch3 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch4 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True)self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)self.branch5_relu = nn.ReLU(inplace=True)self.conv_cat = nn.Sequential(nn.Conv2d(dim_out*5, dim_out, 1, 1, padding=0,bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)def forward(self, x):[b, c, row, col] = x.size()#-----------------------------------------## 一共五个分支#-----------------------------------------#conv1x1 = self.branch1(x)conv3x3_1 = self.branch2(x)conv3x3_2 = self.branch3(x)conv3x3_3 = self.branch4(x)#-----------------------------------------## 第五个分支,全局平均池化+卷积#-----------------------------------------#global_feature = torch.mean(x,2,True)global_feature = torch.mean(global_feature,3,True)global_feature = self.branch5_conv(global_feature)global_feature = self.branch5_bn(global_feature)global_feature = self.branch5_relu(global_feature)global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True)#-----------------------------------------## 将五个分支的内容堆叠起来# 然后1x1卷积整合特征。#-----------------------------------------#feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1)result = self.conv_cat(feature_cat)return resultclass DeepLab(nn.Module):def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16):super(DeepLab, self).__init__()if backbone=="xception":#----------------------------------## 获得两个特征层# 浅层特征 [128,128,256]# 主干部分 [30,30,2048]#----------------------------------#self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained)in_channels = 2048low_level_channels = 256elif backbone=="mobilenet":#----------------------------------## 获得两个特征层# 浅层特征 [128,128,24]# 主干部分 [30,30,320]#----------------------------------#self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained)in_channels = 320low_level_channels = 24the_three_channels = 32the_four_channels = 64else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone))#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor)#----------------------------------## 浅层特征边#----------------------------------#self.shortcut_conv = nn.Sequential(nn.Conv2d(120, 48, 1),nn.BatchNorm2d(48),nn.ReLU(inplace=True))self.cat_conv = nn.Sequential(nn.Conv2d(256+48, 256, 3, stride=1, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Conv2d(256, 256, 3, stride=1, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Dropout(0.1),)self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1)def forward(self, x):H, W = x.size(2), x.size(3)#-----------------------------------------## 获得两个特征层# low_level_features: 浅层特征-进行卷积处理# x : 主干部分-利用ASPP结构进行加强特征提取#-----------------------------------------#low_level_features, the_three_features, the_four_features, x = self.backbone(x)x = self.aspp(x) #输出通道256# low_level_features = self.shortcut_conv(low_level_features) #144*144*24-144*144*48#72*72*32-144*144*32the_three_features_up = F.interpolate(the_three_features, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)#36*36*64-144*144*64the_four_features_up = F.interpolate(the_four_features, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)#144*144*(24+32+64)-144*144*48low_level_features = self.shortcut_conv(torch.cat((low_level_features, the_three_features_up, the_four_features_up), dim=1))#-----------------------------------------## 将加强特征边上采样# 与浅层特征堆叠后利用卷积进行特征提取#-----------------------------------------##x: 144*144*256x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)x = self.cat_conv(torch.cat((x, low_level_features), dim=1))#144*144*(256+48)-144*144*256x = self.cls_conv(x)x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True)return x
ASPP模块中加入SP条形池化分支
#-----------------------------------------## ASPP特征提取模块,增加了SP条形池化分支# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#class ASPP(nn.Module):def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):super(ASPP, self).__init__()self.branch1 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch2 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch3 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch4 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True)self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)self.branch5_relu = nn.ReLU(inplace=True)self.conv_cat = nn.Sequential(nn.Conv2d(dim_out*5+320, dim_out, 1, 1, padding=0,bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True),)#ASPP模块中增加SP条形池化分支self.SP = StripPooling(320, up_kwargs={'mode': 'bilinear', 'align_corners': True})def forward(self, x):[b, c, row, col] = x.size()#-----------------------------------------## 一共五个分支#-----------------------------------------#conv1x1 = self.branch1(x)conv3x3_1 = self.branch2(x)conv3x3_2 = self.branch3(x)conv3x3_3 = self.branch4(x)#增加SP分支sp = self.SP(x) #输出通道数=320#-----------------------------------------## 第五个分支,全局平均池化+卷积#-----------------------------------------#global_feature = torch.mean(x,2,True)global_feature = torch.mean(global_feature,3,True)global_feature = self.branch5_conv(global_feature)global_feature = self.branch5_bn(global_feature)global_feature = self.branch5_relu(global_feature)global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True)#-----------------------------------------## 将五个分支的内容堆叠起来# 然后1x1卷积整合特征。#-----------------------------------------#feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, sp, global_feature], dim=1)result = self.conv_cat(feature_cat)return result# -----------------------------------------## SP条形池化模块,输入通道=输出通道=320# -----------------------------------------#class StripPooling(nn.Module):def __init__(self, in_channels, up_kwargs={'mode': 'bilinear', 'align_corners': True}):super(StripPooling, self).__init__()self.pool1 = nn.AdaptiveAvgPool2d((1, None))#1*Wself.pool2 = nn.AdaptiveAvgPool2d((None, 1))#H*1inter_channels = int(in_channels / 4)self.conv1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True))self.conv2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False), nn.BatchNorm2d(inter_channels))self.conv3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False), nn.BatchNorm2d(inter_channels))self.conv4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True))self.conv5 = nn.Sequential(nn.Conv2d(inter_channels, in_channels, 1, bias=False), nn.BatchNorm2d(in_channels))self._up_kwargs = up_kwargsdef forward(self, x):_, _, h, w = x.size()x1 = self.conv1(x)x2 = F.interpolate(self.conv2(self.pool1(x1)), (h, w), **self._up_kwargs)#结构图的1*W的部分x3 = F.interpolate(self.conv3(self.pool2(x1)), (h, w), **self._up_kwargs)#结构图的H*1的部分x4 = self.conv4(F.relu_(x2 + x3))#结合1*W和H*1的特征out = self.conv5(x4)return F.relu_(x + out)#将输出的特征与原始输入特征结合
DenseASPP替换ASPP,并在DenseASPP中引入SP分支
import torchimport torch.nn as nnimport torch.nn.functional as Ffrom nets.xception import xceptionfrom nets.mobilenetv2 import mobilenetv2class MobileNetV2(nn.Module): def __init__(self, downsample_factor=8, pretrained=True): super(MobileNetV2, self).__init__() from functools import partial model = mobilenetv2(pretrained) self.features = model.features[:-1] self.total_idx = len(self.features) self.down_idx = [2, 4, 7, 14] if downsample_factor == 8: for i in range(self.down_idx[-2], self.down_idx[-1]): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=4) ) elif downsample_factor == 16: for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x): low_level_features = self.features[:4](x) x = self.features[4:](low_level_features) return low_level_features, x '''#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#class ASPP(nn.Module): def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1): super(ASPP, self).__init__() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True) self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch5_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out*5, dim_out, 1, 1, padding=0,bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) def forward(self, x): [b, c, row, col] = x.size() #-----------------------------------------# # 一共五个分支 #-----------------------------------------# conv1x1 = self.branch1(x) conv3x3_1 = self.branch2(x) conv3x3_2 = self.branch3(x) conv3x3_3 = self.branch4(x) #-----------------------------------------# # 第五个分支,全局平均池化+卷积 #-----------------------------------------# global_feature = torch.mean(x,2,True) global_feature = torch.mean(global_feature,3,True) global_feature = self.branch5_conv(global_feature) global_feature = self.branch5_bn(global_feature) global_feature = self.branch5_relu(global_feature) global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) #-----------------------------------------# # 将五个分支的内容堆叠起来 # 然后1x1卷积整合特征。 #-----------------------------------------# feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1) result = self.conv_cat(feature_cat) return result '''class DeepLab(nn.Module): def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16): super(DeepLab, self).__init__() if backbone=="xception": #----------------------------------# # 获得两个特征层 # 浅层特征 [128,128,256] # 主干部分 [30,30,2048] #----------------------------------# self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 2048 low_level_channels = 256 elif backbone=="mobilenet": #----------------------------------# # 获得两个特征层 # 浅层特征 [128,128,24] # 主干部分 [30,30,320] #----------------------------------# self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 320 low_level_channels = 24 else: raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone)) #-----------------------------------------# # ASPP特征提取模块 # 利用不同膨胀率的膨胀卷积进行特征提取 #-----------------------------------------# # self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor) self.denseaspp = _DenseASPPBlock(in_channels, 512, 256, norm_layer=nn.BatchNorm2d, norm_kwargs=None) #----------------------------------# # 浅层特征边 #----------------------------------# self.shortcut_conv = nn.Sequential( nn.Conv2d(low_level_channels, 48, 1), nn.BatchNorm2d(48), nn.ReLU(inplace=True) ) self.cat_conv = nn.Sequential( nn.Conv2d(48+1920, 256, 3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.1), ) self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1) def forward(self, x): H, W = x.size(2), x.size(3) #-----------------------------------------# # 获得两个特征层 # low_level_features: 浅层特征-进行卷积处理 # x : 主干部分-利用ASPP结构进行加强特征提取 #-----------------------------------------# low_level_features, x = self.backbone(x) # x = self.aspp(x) x = self.denseaspp(x) #输入通道是320,输出通道是1600+320 low_level_features = self.shortcut_conv(low_level_features) #144*144*24-144*144*48 #-----------------------------------------# # 将加强特征边上采样 # 与浅层特征堆叠后利用卷积进行特征提取 #-----------------------------------------# # 144*144*1920 x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) x = self.cat_conv(torch.cat((x, low_level_features), dim=1))# 144*144*1968-144*144*256 x = self.cls_conv(x) x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) return x# -----------------------------------------## DenseASPP,含有SP分支,输入通道是320,输出通道是1600+320# -----------------------------------------#class _DenseASPPConv(nn.Sequential): def __init__(self, in_channels, inter_channels, out_channels, atrous_rate, drop_rate=0.1, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(_DenseASPPConv, self).__init__() self.add_module('conv1', nn.Conv2d(in_channels, inter_channels, 1)), self.add_module('bn1', norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs))), self.add_module('relu1', nn.ReLU(True)), self.add_module('conv2', nn.Conv2d(inter_channels, out_channels, 3, dilation=atrous_rate, padding=atrous_rate)), self.add_module('bn2', norm_layer(out_channels, **({} if norm_kwargs is None else norm_kwargs))), self.add_module('relu2', nn.ReLU(True)), self.drop_rate = drop_rate def forward(self, x): features = super(_DenseASPPConv, self).forward(x) if self.drop_rate > 0: features = F.dropout(features, p=self.drop_rate, training=self.training) return featuresclass _DenseASPPBlock(nn.Module): def __init__(self, in_channels, inter_channels1, inter_channels2, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(_DenseASPPBlock, self).__init__() self.aspp_3 = _DenseASPPConv(in_channels, inter_channels1, inter_channels2, 3, 0.1, norm_layer, norm_kwargs) self.aspp_6 = _DenseASPPConv(in_channels + inter_channels2 * 1, inter_channels1, inter_channels2, 6, 0.1, norm_layer, norm_kwargs) self.aspp_12 = _DenseASPPConv(in_channels + inter_channels2 * 2, inter_channels1, inter_channels2, 12, 0.1, norm_layer, norm_kwargs) self.aspp_18 = _DenseASPPConv(in_channels + inter_channels2 * 3, inter_channels1, inter_channels2, 18, 0.1, norm_layer, norm_kwargs) self.aspp_24 = _DenseASPPConv(in_channels + inter_channels2 * 4, inter_channels1, inter_channels2, 24, 0.1, norm_layer, norm_kwargs) self.SP = StripPooling(320, up_kwargs={'mode': 'bilinear', 'align_corners': True}) def forward(self, x): x1 = self.SP(x) aspp3 = self.aspp_3(x) x = torch.cat([aspp3, x], dim=1) aspp6 = self.aspp_6(x) x = torch.cat([aspp6, x], dim=1) aspp12 = self.aspp_12(x) x = torch.cat([aspp12, x], dim=1) aspp18 = self.aspp_18(x) x = torch.cat([aspp18, x], dim=1) aspp24 = self.aspp_24(x) x = torch.cat([aspp24, x], dim=1) x = torch.cat([x, x1], dim=1) return x# -----------------------------------------## SP条形池化模块,输入通道=输出通道=320# -----------------------------------------#class StripPooling(nn.Module): def __init__(self, in_channels, up_kwargs={'mode': 'bilinear', 'align_corners': True}): super(StripPooling, self).__init__() self.pool1 = nn.AdaptiveAvgPool2d((1, None))#1*W self.pool2 = nn.AdaptiveAvgPool2d((None, 1))#H*1 inter_channels = int(in_channels / 4) self.conv1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True)) self.conv2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False), nn.BatchNorm2d(inter_channels)) self.conv3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False), nn.BatchNorm2d(inter_channels)) self.conv4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True)) self.conv5 = nn.Sequential(nn.Conv2d(inter_channels, in_channels, 1, bias=False), nn.BatchNorm2d(in_channels)) self._up_kwargs = up_kwargs def forward(self, x): _, _, h, w = x.size() x1 = self.conv1(x) x2 = F.interpolate(self.conv2(self.pool1(x1)), (h, w), **self._up_kwargs)#结构图的1*W的部分 x3 = F.interpolate(self.conv3(self.pool2(x1)), (h, w), **self._up_kwargs)#结构图的H*1的部分 x4 = self.conv4(F.relu_(x2 + x3))#结合1*W和H*1的特征 out = self.conv5(x4) return F.relu_(x + out)#将输出的特征与原始输入特征结合
DenseASPP替换ASPP,并采用上面两种级联方式
import torchimport torch.nn as nnimport torch.nn.functional as Ffrom nets.xception import xceptionfrom nets.mobilenetv2 import mobilenetv2class MobileNetV2(nn.Module): def __init__(self, downsample_factor=8, pretrained=True): super(MobileNetV2, self).__init__() from functools import partial model = mobilenetv2(pretrained) self.features = model.features[:-1] self.total_idx = len(self.features) self.down_idx = [2, 4, 7, 14] if downsample_factor == 8: for i in range(self.down_idx[-2], self.down_idx[-1]): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=4) ) elif downsample_factor == 16: for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x): # 输入shape为576*576*3 low_level_features = self.features[:4](x) # 144*144*24 the_three_features = self.features[:7](x) # 72*72*32 the_four_features = self.features[:11](x) # 36*36*64 x = self.features[4:](low_level_features) # 36*36*320 return low_level_features, the_three_features, the_four_features, x'''#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#class ASPP(nn.Module): def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1): super(ASPP, self).__init__() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True) self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch5_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out*5, dim_out, 1, 1, padding=0,bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) def forward(self, x): [b, c, row, col] = x.size() #-----------------------------------------# # 一共五个分支 #-----------------------------------------# conv1x1 = self.branch1(x) conv3x3_1 = self.branch2(x) conv3x3_2 = self.branch3(x) conv3x3_3 = self.branch4(x) #-----------------------------------------# # 第五个分支,全局平均池化+卷积 #-----------------------------------------# global_feature = torch.mean(x,2,True) global_feature = torch.mean(global_feature,3,True) global_feature = self.branch5_conv(global_feature) global_feature = self.branch5_bn(global_feature) global_feature = self.branch5_relu(global_feature) global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) #-----------------------------------------# # 将五个分支的内容堆叠起来 # 然后1x1卷积整合特征。 #-----------------------------------------# feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1) result = self.conv_cat(feature_cat) return result '''class DeepLab(nn.Module): def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16): super(DeepLab, self).__init__() if backbone=="xception": #----------------------------------# # 获得两个特征层 # 浅层特征 [128,128,256] # 主干部分 [30,30,2048] #----------------------------------# self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 2048 low_level_channels = 256 elif backbone=="mobilenet": #----------------------------------# # 获得两个特征层 # 浅层特征 [128,128,24] # 主干部分 [30,30,320] #----------------------------------# self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 320 low_level_channels = 24 the_three_channels = 32 the_four_channels = 64 else: raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone)) #-----------------------------------------# # ASPP特征提取模块 # 利用不同膨胀率的膨胀卷积进行特征提取 #-----------------------------------------# # self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor) self.denseaspp = _DenseASPPBlock(in_channels, 512, 256, norm_layer=nn.BatchNorm2d, norm_kwargs=None) #----------------------------------# # 浅层特征边 #----------------------------------# self.shortcut_conv = nn.Sequential( nn.Conv2d(low_level_channels, 48, 1), nn.BatchNorm2d(48), nn.ReLU(inplace=True) ) self.cat_conv = nn.Sequential( nn.Conv2d(304, 256, 3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.1), ) self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1) # CFF self.F1 = nn.Sequential( nn.Conv2d(32, 192, 1, stride=1, padding=0), nn.BatchNorm2d(192) ) self.F2_1 = nn.Sequential( nn.Conv2d(64, 64, 3, 1, padding=2, dilation=2, bias=True), # dilation=2的膨胀卷积 nn.BatchNorm2d(64, momentum=0.1), ) #降低通道数 self.down_conv = nn.Sequential( nn.Conv2d(1920, 256, 1), nn.BatchNorm2d(256), nn.ReLU(inplace=True) ) def forward(self, x): H, W = x.size(2), x.size(3) #-----------------------------------------# # 获得两个特征层 # low_level_features: 浅层特征-进行卷积处理 # x : 主干部分-利用ASPP结构进行加强特征提取 #-----------------------------------------# low_level_features, the_three_features, the_four_features, x = self.backbone(x) # x = self.aspp(x) x = self.denseaspp(x) #输入36*36*320,输出36*36*1920 x = self.down_conv(x)#36*36*1920-36*36*256 low_level_features = self.shortcut_conv(low_level_features) #144*144*24-144*144*48 # ---------------CFF模块-----------------# F1 = self.F1(the_three_features) # 72*72*32-72*72*192 # 36*36*64-72*72*64 F2_0 = F.interpolate(the_four_features, size=(the_three_features.size(2), the_three_features.size(3)), mode='bilinear', align_corners=True) F2_1 = self.F2_1(F2_0) # 72*72*64-72*72*64 FN = F.relu_(torch.cat((F1, F2_1), dim=1)) # 72*72*256 # ----------------------------------------# x = F.interpolate(x, size=(the_three_features.size(2), the_three_features.size(3)), mode='bilinear', align_corners=True) # 72*72*256 FN2 = FN + x # 72*72*256,此处维度必须一致,即二者的通道数必须一样 F2_1 = F.interpolate(FN2, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) # 144*144*256 #-----------------------------------------# # 将加强特征边上采样 # 与浅层特征堆叠后利用卷积进行特征提取 #-----------------------------------------# # 144*144*1920 # x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) # x = self.cat_conv(torch.cat((x, low_level_features), dim=1)) x = self.cat_conv(torch.cat((low_level_features, F2_1), dim=1)) # 144*144*304-144*144*256 x = self.cls_conv(x) x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) return x# -----------------------------------------## DenseASPP,含有SP分支,输入通道是320,输出通道是1600+320# -----------------------------------------#class _DenseASPPConv(nn.Sequential): def __init__(self, in_channels, inter_channels, out_channels, atrous_rate, drop_rate=0.1, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(_DenseASPPConv, self).__init__() self.add_module('conv1', nn.Conv2d(in_channels, inter_channels, 1)), self.add_module('bn1', norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs))), self.add_module('relu1', nn.ReLU(True)), self.add_module('conv2', nn.Conv2d(inter_channels, out_channels, 3, dilation=atrous_rate, padding=atrous_rate)), self.add_module('bn2', norm_layer(out_channels, **({} if norm_kwargs is None else norm_kwargs))), self.add_module('relu2', nn.ReLU(True)), self.drop_rate = drop_rate def forward(self, x): features = super(_DenseASPPConv, self).forward(x) if self.drop_rate > 0: features = F.dropout(features, p=self.drop_rate, training=self.training) return featuresclass _DenseASPPBlock(nn.Module): def __init__(self, in_channels, inter_channels1, inter_channels2, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(_DenseASPPBlock, self).__init__() self.aspp_3 = _DenseASPPConv(in_channels, inter_channels1, inter_channels2, 3, 0.1, norm_layer, norm_kwargs) self.aspp_6 = _DenseASPPConv(in_channels + inter_channels2 * 1, inter_channels1, inter_channels2, 6, 0.1, norm_layer, norm_kwargs) self.aspp_12 = _DenseASPPConv(in_channels + inter_channels2 * 2, inter_channels1, inter_channels2, 12, 0.1, norm_layer, norm_kwargs) self.aspp_18 = _DenseASPPConv(in_channels + inter_channels2 * 3, inter_channels1, inter_channels2, 18, 0.1, norm_layer, norm_kwargs) self.aspp_24 = _DenseASPPConv(in_channels + inter_channels2 * 4, inter_channels1, inter_channels2, 24, 0.1, norm_layer, norm_kwargs) self.SP = StripPooling(320, up_kwargs={'mode': 'bilinear', 'align_corners': True}) def forward(self, x): x1 = self.SP(x) aspp3 = self.aspp_3(x) x = torch.cat([aspp3, x], dim=1) aspp6 = self.aspp_6(x) x = torch.cat([aspp6, x], dim=1) aspp12 = self.aspp_12(x) x = torch.cat([aspp12, x], dim=1) aspp18 = self.aspp_18(x) x = torch.cat([aspp18, x], dim=1) aspp24 = self.aspp_24(x) x = torch.cat([aspp24, x], dim=1) x = torch.cat([x, x1], dim=1) return x# -----------------------------------------## SP条形池化模块,输入通道=输出通道=320# -----------------------------------------#class StripPooling(nn.Module): def __init__(self, in_channels, up_kwargs={'mode': 'bilinear', 'align_corners': True}): super(StripPooling, self).__init__() self.pool1 = nn.AdaptiveAvgPool2d((1, None))#1*W self.pool2 = nn.AdaptiveAvgPool2d((None, 1))#H*1 inter_channels = int(in_channels / 4) self.conv1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True)) self.conv2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False), nn.BatchNorm2d(inter_channels)) self.conv3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False), nn.BatchNorm2d(inter_channels)) self.conv4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True)) self.conv5 = nn.Sequential(nn.Conv2d(inter_channels, in_channels, 1, bias=False), nn.BatchNorm2d(in_channels)) self._up_kwargs = up_kwargs def forward(self, x): _, _, h, w = x.size() x1 = self.conv1(x) x2 = F.interpolate(self.conv2(self.pool1(x1)), (h, w), **self._up_kwargs)#结构图的1*W的部分 x3 = F.interpolate(self.conv3(self.pool2(x1)), (h, w), **self._up_kwargs)#结构图的H*1的部分 x4 = self.conv4(F.relu_(x2 + x3))#结合1*W和H*1的特征 out = self.conv5(x4) return F.relu_(x + out)#将输出的特征与原始输入特征结合
import torchimport torch.nn as nnimport torch.nn.functional as Ffrom nets.mobilenetv2 import mobilenetv2from nets.xception import xceptionclass MobileNetV2(nn.Module):def __init__(self, downsample_factor=8, pretrained=True):super(MobileNetV2, self).__init__()from functools import partialmodel = mobilenetv2(pretrained)self.features = model.features[:-1]self.total_idx = len(self.features)self.down_idx = [2, 4, 7, 14]if downsample_factor == 8:for i in range(self.down_idx[-2], self.down_idx[-1]):self.features[i].apply(partial(self._nostride_dilate, dilate=2))for i in range(self.down_idx[-1], self.total_idx):self.features[i].apply(partial(self._nostride_dilate, dilate=4))elif downsample_factor == 16:for i in range(self.down_idx[-1], self.total_idx):self.features[i].apply(partial(self._nostride_dilate, dilate=2))def _nostride_dilate(self, m, dilate):classname = m.__class__.__name__if classname.find('Conv') != -1:if m.stride == (2, 2):m.stride = (1, 1)if m.kernel_size == (3, 3):m.dilation = (dilate//2, dilate//2)m.padding = (dilate//2, dilate//2)else:if m.kernel_size == (3, 3):m.dilation = (dilate, dilate)m.padding = (dilate, dilate)def forward(self, x):#输出两个有效特征层low_level_features = self.features[:4](x)the_three_features = self.features[:7](x)the_four_features = self.features[:11](x)x = self.features[4:](low_level_features)return low_level_features, the_three_features, the_four_features, x'''#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#class ASPP(nn.Module):def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):super(ASPP, self).__init__()self.branch1 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), #dilation=1即没使用膨胀卷积nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True), #30,30,256)self.branch2 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True), #dilation=6的膨胀卷积nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True), #30,30,256)self.branch3 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True), #dilation12的膨胀卷积nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True), #30,30,256)self.branch4 = nn.Sequential(nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True), #dilation=18的膨胀卷积nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True), #30,30,256)self.branch5 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True))# self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True)# self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)# self.branch5_relu = nn.ReLU(inplace=True)self.conv_cat = nn.Sequential(nn.Conv2d(dim_out*5+320, dim_out, 1, 1, padding=0, bias=True),nn.BatchNorm2d(dim_out, momentum=bn_mom),nn.ReLU(inplace=True), #30,30,256)self.head = StripPooling(320, up_kwargs={'mode': 'bilinear', 'align_corners': True})def forward(self, x):#获取输入特征图的高宽[b, c, row, col] = x.size()#-----------------------------------------## 一共五个分支#-----------------------------------------#conv1x1 = self.branch1(x) #30,30,256# print("X1.shape", conv1x1.size())conv3x3_1 = self.branch2(x) #30,30,256# print("X2.shape", conv3x3_1.size())conv3x3_2 = self.branch3(x) #30,30,256# print("X3.shape", conv3x3_2.size())conv3x3_3 = self.branch4(x) #30,30,256# print("X4.shape", conv3x3_3.size())spm = self.head(x)#-----------------------------------------## 第五个分支,全局平均池化+卷积#-----------------------------------------## global_feature = torch.mean(x,2,True)# global_feature = torch.mean(global_feature,3,True)# global_feature = self.branch5_conv(global_feature)# global_feature = self.branch5_bn(global_feature)# global_feature = self.branch5_relu(global_feature)global_feature = self.branch5(x)# print("X5.shape", global_feature.size())global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) #30,30,256#-----------------------------------------## 将五个分支的内容堆叠起来# 然后1x1卷积整合特征。#-----------------------------------------#feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, spm, global_feature], dim=1) #30,30,256*5result = self.conv_cat(feature_cat) #堆叠完后利用1*1卷积对通道数进行调整,30,30,256return result'''class DeepLab(nn.Module):def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16):super(DeepLab, self).__init__()if backbone=="xception":#----------------------------------## 获得两个特征层# 浅层特征 [128,128,256]# 主干部分 [30,30,2048]#----------------------------------#self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained)in_channels = 2048low_level_channels = 256elif backbone=="mobilenet":#----------------------------------## 获得两个特征层# 浅层特征 [128,128,24]# 主干部分 [30,30,320]#----------------------------------#self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained)in_channels = 320low_level_channels = 24the_three_channels = 32the_four_channels = 64else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone))#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------## self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor)self.denseaspp = _DenseASPPBlock(in_channels, 512, 256, norm_layer=nn.BatchNorm2d, norm_kwargs=None)# self.SE1 = SELayer(1600+320)#----------------------------------## 浅层特征边#----------------------------------#self.shortcut_conv = nn.Sequential(nn.Conv2d(low_level_channels+the_three_channels+the_four_channels, 48, 1),nn.BatchNorm2d(48),nn.ReLU(inplace=True))# self.SE2 = SELayer(48)self.cat_conv = nn.Sequential(nn.Conv2d(1920+48, 256, 3, stride=1, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Conv2d(256, 256, 3, stride=1, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Dropout(0.1),)self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1)def forward(self, x): #此处传入的x为原图b,3,512,512H, W = x.size(2), x.size(3)#-----------------------------------------## 获得两个特征层# low_level_features: 浅层特征-进行卷积处理 128,128,24# x : 主干部分-利用ASPP结构进行加强特征提取 30,30,256#-----------------------------------------#low_level_features, the_three_features, the_four_features, x = self.backbone(x)# x = self.aspp(x) #aspp后的输出x = self.denseaspp(x)# x = self.SE1(x)#浅层特征网络经过一个1*1卷积,128,128,24->128,128,48the_three_features_up = F.interpolate(the_three_features, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)the_four_features_up = F.interpolate(the_four_features, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)low_level_features = self.shortcut_conv(torch.cat((low_level_features, the_three_features_up, the_four_features_up), dim=1))# low_level_features = self.SE2(low_level_features)#-----------------------------------------## 将加强特征边上采样# 与浅层特征堆叠后利用卷积进行特征提取#-----------------------------------------#x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) #x:128,128,256x = self.cat_conv(torch.cat((x, low_level_features), dim=1)) #128,128,256+48->128,128,256x = self.cls_conv(x) #128,128,256->128,128,num_classesx = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) #512,512,num_classesreturn x# -----------------------------------------## SP条形池化模块# -----------------------------------------#class StripPooling(nn.Module):def __init__(self, in_channels, up_kwargs={'mode': 'bilinear', 'align_corners': True}):super(StripPooling, self).__init__()self.pool1 = nn.AdaptiveAvgPool2d((1, None))#1*Wself.pool2 = nn.AdaptiveAvgPool2d((None, 1))#H*1inter_channels = int(in_channels / 4)self.conv1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True))self.conv2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False), nn.BatchNorm2d(inter_channels))self.conv3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False), nn.BatchNorm2d(inter_channels))self.conv4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(True))self.conv5 = nn.Sequential(nn.Conv2d(inter_channels, in_channels, 1, bias=False), nn.BatchNorm2d(in_channels))self._up_kwargs = up_kwargsdef forward(self, x):_, _, h, w = x.size()x1 = self.conv1(x)x2 = F.interpolate(self.conv2(self.pool1(x1)), (h, w), **self._up_kwargs)#结构图的1*W的部分x3 = F.interpolate(self.conv3(self.pool2(x1)), (h, w), **self._up_kwargs)#结构图的H*1的部分x4 = self.conv4(F.relu_(x2 + x3))#结合1*W和H*1的特征out = self.conv5(x4)return F.relu_(x + out)#将输出的特征与原始输入特征结合# -----------------------------------------## DenseASPP# -----------------------------------------#class _DenseASPPConv(nn.Sequential):def __init__(self, in_channels, inter_channels, out_channels, atrous_rate, drop_rate=0.1, norm_layer=nn.BatchNorm2d, norm_kwargs=None):super(_DenseASPPConv, self).__init__()self.add_module('conv1', nn.Conv2d(in_channels, inter_channels, 1)),self.add_module('bn1', norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs))),self.add_module('relu1', nn.ReLU(True)),self.add_module('conv2', nn.Conv2d(inter_channels, out_channels, 3, dilation=atrous_rate, padding=atrous_rate)),self.add_module('bn2', norm_layer(out_channels, **({} if norm_kwargs is None else norm_kwargs))),self.add_module('relu2', nn.ReLU(True)),self.drop_rate = drop_ratedef forward(self, x):features = super(_DenseASPPConv, self).forward(x)if self.drop_rate > 0:features = F.dropout(features, p=self.drop_rate, training=self.training)return featuresclass _DenseASPPBlock(nn.Module):def __init__(self, in_channels, inter_channels1, inter_channels2, norm_layer=nn.BatchNorm2d, norm_kwargs=None):super(_DenseASPPBlock, self).__init__()self.aspp_3 = _DenseASPPConv(in_channels, inter_channels1, inter_channels2, 3, 0.1, norm_layer, norm_kwargs)self.aspp_6 = _DenseASPPConv(in_channels + inter_channels2 * 1, inter_channels1, inter_channels2, 6, 0.1, norm_layer, norm_kwargs)self.aspp_12 = _DenseASPPConv(in_channels + inter_channels2 * 2, inter_channels1, inter_channels2, 12, 0.1, norm_layer, norm_kwargs)self.aspp_18 = _DenseASPPConv(in_channels + inter_channels2 * 3, inter_channels1, inter_channels2, 18, 0.1, norm_layer, norm_kwargs)self.aspp_24 = _DenseASPPConv(in_channels + inter_channels2 * 4, inter_channels1, inter_channels2, 24, 0.1, norm_layer, norm_kwargs)self.SP = StripPooling(320, up_kwargs={'mode': 'bilinear', 'align_corners': True})def forward(self, x):x1 = self.SP(x)aspp3 = self.aspp_3(x)x = torch.cat([aspp3, x], dim=1)aspp6 = self.aspp_6(x)x = torch.cat([aspp6, x], dim=1)aspp12 = self.aspp_12(x)x = torch.cat([aspp12, x], dim=1)aspp18 = self.aspp_18(x)x = torch.cat([aspp18, x], dim=1)aspp24 = self.aspp_24(x)x = torch.cat([aspp24, x], dim=1)x = torch.cat([x, x1], dim=1)return x
28更新(解码复习)
import torchimport torch.nn as nnimport torch.nn.functional as Ffrom nets.xception import xceptionfrom nets.mobilenetv2 import mobilenetv2class MobileNetV2(nn.Module): def __init__(self, downsample_factor=8, pretrained=True): super(MobileNetV2, self).__init__() from functools import partial model = mobilenetv2(pretrained) self.features = model.features[:-1] self.total_idx = len(self.features) self.down_idx = [2, 4, 7, 14] if downsample_factor == 8: for i in range(self.down_idx[-2], self.down_idx[-1]): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=4) ) elif downsample_factor == 16: for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x): # 输入shape为576*576*3 low_level_features = self.features[:4](x) # 144*144*24 the_three_features = self.features[:7](x) # 72*72*32 # the_four_features = self.features[:11](x) # 36*36*64 x = self.features[4:](low_level_features) # 36*36*320 return low_level_features, the_three_features, x#-----------------------------------------## ASPP特征提取模块# 利用不同膨胀率的膨胀卷积进行特征提取#-----------------------------------------#class ASPP(nn.Module): def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1): super(ASPP, self).__init__() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in+dim_out, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in+dim_out, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True) self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch5_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out*5, dim_out, 1, 1, padding=0,bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) def forward(self, x): [b, c, row, col] = x.size() #-----------------------------------------# # 一共五个分支 #-----------------------------------------# conv1x1 = self.branch1(x) #32*32*320-32*32*256 conv3x3_1 = self.branch2(x) # 32*32*320-32*32*256 x1 = torch.cat((x, conv3x3_1), dim=1) #32*32*576 conv3x3_2 = self.branch3(x1) #32*32*576-32*32*256 x2 = torch.cat((x, conv3x3_2), dim=1) # 32*32*576 conv3x3_3 = self.branch4(x2) #-----------------------------------------# # 第五个分支,全局平均池化+卷积 #-----------------------------------------# global_feature = torch.mean(x,2,True) global_feature = torch.mean(global_feature,3,True) global_feature = self.branch5_conv(global_feature) global_feature = self.branch5_bn(global_feature) global_feature = self.branch5_relu(global_feature) global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) #-----------------------------------------# # 将五个分支的内容堆叠起来 # 然后1x1卷积整合特征。 #-----------------------------------------# feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1) result = self.conv_cat(feature_cat) return resultclass DeepLab(nn.Module): def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16): super(DeepLab, self).__init__() if backbone=="xception": #----------------------------------# # 获得两个特征层 # 浅层特征 [128,128,256] # 主干部分 [30,30,2048] #----------------------------------# self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 2048 low_level_channels = 256 elif backbone=="mobilenet": #----------------------------------# # 获得两个特征层 # 浅层特征 [128,128,24] # 主干部分 [30,30,320] #----------------------------------# self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained) in_channels = 320 low_level_channels = 24 else: raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone)) #-----------------------------------------# # ASPP特征提取模块 # 利用不同膨胀率的膨胀卷积进行特征提取 #-----------------------------------------# self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor) #----------------------------------# # 浅层特征边 #----------------------------------# self.shortcut_conv = nn.Sequential( nn.Conv2d(32, 64, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.cat_conv = nn.Sequential( nn.Conv2d(48+256, 256, 3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.5), nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout(0.1), ) self.cls_conv = nn.Conv2d(688, num_classes, 3, stride=1, padding=1) self.three_conv = nn.Sequential( nn.Conv2d(32, 256, 3, stride=1, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True)) self.low_conv = nn.Sequential( nn.Conv2d(24, 48, 1, stride=1, padding=0), nn.BatchNorm2d(48), nn.ReLU(inplace=True)) self.low_conv_0 = nn.Sequential( nn.Conv2d(48, 368, 1, stride=1, padding=0), nn.BatchNorm2d(368), nn.ReLU(inplace=True)) self.cSE = cSE_Module(320) self.sigmoid = nn.Sigmoid() def forward(self, x): H, W = x.size(2), x.size(3) #-----------------------------------------# # 获得两个特征层 # low_level_features: 浅层特征-进行卷积处理 # x : 主干部分-利用ASPP结构进行加强特征提取 #-----------------------------------------# # low_level_features, x = self.backbone(x) low_level_features, the_three_features, x = self.backbone(x) x = self.aspp(x) #32*32*256 x = F.interpolate(x, size=(the_three_features.size(2), the_three_features.size(3)), mode='bilinear', align_corners=True) #64*64*256 the_three_features = self.shortcut_conv(the_three_features) #64*64*32-64*64*64 x1 = torch.cat((x, the_three_features), dim=1) #64*64*320 x2_0 = F.interpolate(x1, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) #128*128*320 x2 = self.cSE(x2_0) #128*128*320-128*128*320 low_level_features = self.low_conv(low_level_features) #128*128*24-128*128*48 low_level_features_0 = self.low_conv_0(low_level_features) #128*128*48-128*128*368 x3 = torch.cat((x2, low_level_features), dim=1) #128*128*368 x3 = self.sigmoid(x3) #128*128*368 x4 = x3 * low_level_features_0 #128*128*368 x5 = torch.cat((x4, x2_0), dim=1) #128*128*688 x5 = self.cls_conv(x5) x6 = F.interpolate(x5, size=(H, W), mode='bilinear', align_corners=True) return x6 #-----------------------------------------# # 将加强特征边上采样 # 与浅层特征堆叠后利用卷积进行特征提取 #-----------------------------------------# # x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True) # x = self.cat_conv(torch.cat((x, low_level_features), dim=1)) # x = self.cls_conv(x) # x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) # return xclass cSE_Module(nn.Module): #通道注意力机制 def __init__(self, channel, ratio = 16): super(cSE_Module, self).__init__() self.squeeze = nn.AdaptiveAvgPool2d(1) self.excitation = nn.Sequential( nn.Conv2d(channel, channel // ratio, 1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(channel // ratio, channel, 1, bias=False), nn.Sigmoid() # nn.Linear(in_features=channel, out_features=channel // ratio), # nn.ReLU(inplace=True), # nn.Linear(in_features=channel // ratio, out_features=channel), # nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.squeeze(x) z = self.excitation(y) return x * z.expand_as(x) # b, c, _, _ = x.size() # y = self.squeeze(x).view(b, c) # z = self.excitation(y).view(b, c, 1, 1) # return x * z.expand_as(x)
来源地址:https://blog.csdn.net/m0_56247038/article/details/127151320